Step |
Hyp |
Ref |
Expression |
1 |
|
srasubrg.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srasubrg.u |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑊 ) ) |
3 |
|
srasubrg.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
5 |
1 3
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
6 |
1 3
|
sraaddg |
⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
7 |
6
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
8 |
1 3
|
sramulr |
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
9 |
8
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
10 |
4 5 7 9
|
subrgpropd |
⊢ ( 𝜑 → ( SubRing ‘ 𝑊 ) = ( SubRing ‘ 𝐴 ) ) |
11 |
2 10
|
eleqtrd |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐴 ) ) |