| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sralmod0.a |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
| 2 |
|
sralmod0.z |
|- ( ph -> .0. = ( 0g ` W ) ) |
| 3 |
|
sralmod0.s |
|- ( ph -> S C_ ( Base ` W ) ) |
| 4 |
|
eqidd |
|- ( ph -> ( Base ` W ) = ( Base ` W ) ) |
| 5 |
1 3
|
srabase |
|- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
| 6 |
1 3
|
sraaddg |
|- ( ph -> ( +g ` W ) = ( +g ` A ) ) |
| 7 |
6
|
oveqdr |
|- ( ( ph /\ ( a e. ( Base ` W ) /\ b e. ( Base ` W ) ) ) -> ( a ( +g ` W ) b ) = ( a ( +g ` A ) b ) ) |
| 8 |
4 5 7
|
grpidpropd |
|- ( ph -> ( 0g ` W ) = ( 0g ` A ) ) |
| 9 |
2 8
|
eqtrd |
|- ( ph -> .0. = ( 0g ` A ) ) |