| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubrgd.s |
|- ( ph -> S = ( I |`s D ) ) |
| 2 |
|
issubrgd.z |
|- ( ph -> .0. = ( 0g ` I ) ) |
| 3 |
|
issubrgd.p |
|- ( ph -> .+ = ( +g ` I ) ) |
| 4 |
|
issubrgd.ss |
|- ( ph -> D C_ ( Base ` I ) ) |
| 5 |
|
issubrgd.zcl |
|- ( ph -> .0. e. D ) |
| 6 |
|
issubrgd.acl |
|- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
| 7 |
|
issubrgd.ncl |
|- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
| 8 |
|
issubrgd.o |
|- ( ph -> .1. = ( 1r ` I ) ) |
| 9 |
|
issubrgd.t |
|- ( ph -> .x. = ( .r ` I ) ) |
| 10 |
|
issubrgd.ocl |
|- ( ph -> .1. e. D ) |
| 11 |
|
issubrgd.tcl |
|- ( ( ph /\ x e. D /\ y e. D ) -> ( x .x. y ) e. D ) |
| 12 |
|
issubrgd.g |
|- ( ph -> I e. Ring ) |
| 13 |
|
ringgrp |
|- ( I e. Ring -> I e. Grp ) |
| 14 |
12 13
|
syl |
|- ( ph -> I e. Grp ) |
| 15 |
1 2 3 4 5 6 7 14
|
issubgrpd2 |
|- ( ph -> D e. ( SubGrp ` I ) ) |
| 16 |
8 10
|
eqeltrrd |
|- ( ph -> ( 1r ` I ) e. D ) |
| 17 |
9
|
oveqdr |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) = ( x ( .r ` I ) y ) ) |
| 18 |
11
|
3expb |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) e. D ) |
| 19 |
17 18
|
eqeltrrd |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x ( .r ` I ) y ) e. D ) |
| 20 |
19
|
ralrimivva |
|- ( ph -> A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) |
| 21 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
| 22 |
|
eqid |
|- ( 1r ` I ) = ( 1r ` I ) |
| 23 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
| 24 |
21 22 23
|
issubrg2 |
|- ( I e. Ring -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
| 25 |
12 24
|
syl |
|- ( ph -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
| 26 |
15 16 20 25
|
mpbir3and |
|- ( ph -> D e. ( SubRing ` I ) ) |