| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubrgd.s |
⊢ ( 𝜑 → 𝑆 = ( 𝐼 ↾s 𝐷 ) ) |
| 2 |
|
issubrgd.z |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐼 ) ) |
| 3 |
|
issubrgd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝐼 ) ) |
| 4 |
|
issubrgd.ss |
⊢ ( 𝜑 → 𝐷 ⊆ ( Base ‘ 𝐼 ) ) |
| 5 |
|
issubrgd.zcl |
⊢ ( 𝜑 → 0 ∈ 𝐷 ) |
| 6 |
|
issubrgd.acl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 + 𝑦 ) ∈ 𝐷 ) |
| 7 |
|
issubrgd.ncl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( invg ‘ 𝐼 ) ‘ 𝑥 ) ∈ 𝐷 ) |
| 8 |
|
issubrgd.o |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐼 ) ) |
| 9 |
|
issubrgd.t |
⊢ ( 𝜑 → · = ( .r ‘ 𝐼 ) ) |
| 10 |
|
issubrgd.ocl |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |
| 11 |
|
issubrgd.tcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) |
| 12 |
|
issubrgd.g |
⊢ ( 𝜑 → 𝐼 ∈ Ring ) |
| 13 |
|
ringgrp |
⊢ ( 𝐼 ∈ Ring → 𝐼 ∈ Grp ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |
| 15 |
1 2 3 4 5 6 7 14
|
issubgrpd2 |
⊢ ( 𝜑 → 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ) |
| 16 |
8 10
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐼 ) ∈ 𝐷 ) |
| 17 |
9
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ) |
| 18 |
11
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐷 ) |
| 19 |
17 18
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 20 |
19
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝐼 ) = ( 1r ‘ 𝐼 ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) |
| 24 |
21 22 23
|
issubrg2 |
⊢ ( 𝐼 ∈ Ring → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
| 25 |
12 24
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ( SubRing ‘ 𝐼 ) ↔ ( 𝐷 ∈ ( SubGrp ‘ 𝐼 ) ∧ ( 1r ‘ 𝐼 ) ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 ( .r ‘ 𝐼 ) 𝑦 ) ∈ 𝐷 ) ) ) |
| 26 |
15 16 20 25
|
mpbir3and |
⊢ ( 𝜑 → 𝐷 ∈ ( SubRing ‘ 𝐼 ) ) |