Metamath Proof Explorer


Theorem sralmod0

Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)

Ref Expression
Hypotheses sralmod0.a φA=subringAlgWS
sralmod0.z φ0˙=0W
sralmod0.s φSBaseW
Assertion sralmod0 φ0˙=0A

Proof

Step Hyp Ref Expression
1 sralmod0.a φA=subringAlgWS
2 sralmod0.z φ0˙=0W
3 sralmod0.s φSBaseW
4 eqidd φBaseW=BaseW
5 1 3 srabase φBaseW=BaseA
6 1 3 sraaddg φ+W=+A
7 6 oveqdr φaBaseWbBaseWa+Wb=a+Ab
8 4 5 7 grpidpropd φ0W=0A
9 2 8 eqtrd φ0˙=0A