Metamath Proof Explorer


Theorem sra1r

Description: The multiplicative neutral element of a subring algebra. (Contributed by Thierry Arnoux, 24-Jul-2023)

Ref Expression
Hypotheses sral1r.a
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) )
sral1r.1
|- ( ph -> .1. = ( 1r ` W ) )
sral1r.s
|- ( ph -> S C_ ( Base ` W ) )
Assertion sra1r
|- ( ph -> .1. = ( 1r ` A ) )

Proof

Step Hyp Ref Expression
1 sral1r.a
 |-  ( ph -> A = ( ( subringAlg ` W ) ` S ) )
2 sral1r.1
 |-  ( ph -> .1. = ( 1r ` W ) )
3 sral1r.s
 |-  ( ph -> S C_ ( Base ` W ) )
4 eqidd
 |-  ( ph -> ( Base ` W ) = ( Base ` W ) )
5 1 3 srabase
 |-  ( ph -> ( Base ` W ) = ( Base ` A ) )
6 1 3 sramulr
 |-  ( ph -> ( .r ` W ) = ( .r ` A ) )
7 6 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( .r ` W ) y ) = ( x ( .r ` A ) y ) )
8 4 5 7 rngidpropd
 |-  ( ph -> ( 1r ` W ) = ( 1r ` A ) )
9 2 8 eqtrd
 |-  ( ph -> .1. = ( 1r ` A ) )