Metamath Proof Explorer


Theorem dimpropd

Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses dimpropd.b1
|- ( ph -> B = ( Base ` K ) )
dimpropd.b2
|- ( ph -> B = ( Base ` L ) )
dimpropd.w
|- ( ph -> B C_ W )
dimpropd.p
|- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
dimpropd.s1
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W )
dimpropd.s2
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
dimpropd.f
|- F = ( Scalar ` K )
dimpropd.g
|- G = ( Scalar ` L )
dimpropd.p1
|- ( ph -> P = ( Base ` F ) )
dimpropd.p2
|- ( ph -> P = ( Base ` G ) )
dimpropd.a
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` F ) y ) = ( x ( +g ` G ) y ) )
dimpropd.v1
|- ( ph -> K e. LVec )
dimpropd.v2
|- ( ph -> L e. LVec )
Assertion dimpropd
|- ( ph -> ( dim ` K ) = ( dim ` L ) )

Proof

Step Hyp Ref Expression
1 dimpropd.b1
 |-  ( ph -> B = ( Base ` K ) )
2 dimpropd.b2
 |-  ( ph -> B = ( Base ` L ) )
3 dimpropd.w
 |-  ( ph -> B C_ W )
4 dimpropd.p
 |-  ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
5 dimpropd.s1
 |-  ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W )
6 dimpropd.s2
 |-  ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
7 dimpropd.f
 |-  F = ( Scalar ` K )
8 dimpropd.g
 |-  G = ( Scalar ` L )
9 dimpropd.p1
 |-  ( ph -> P = ( Base ` F ) )
10 dimpropd.p2
 |-  ( ph -> P = ( Base ` G ) )
11 dimpropd.a
 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` F ) y ) = ( x ( +g ` G ) y ) )
12 dimpropd.v1
 |-  ( ph -> K e. LVec )
13 dimpropd.v2
 |-  ( ph -> L e. LVec )
14 eqid
 |-  ( LBasis ` K ) = ( LBasis ` K )
15 14 lbsex
 |-  ( K e. LVec -> ( LBasis ` K ) =/= (/) )
16 12 15 syl
 |-  ( ph -> ( LBasis ` K ) =/= (/) )
17 n0
 |-  ( ( LBasis ` K ) =/= (/) <-> E. x x e. ( LBasis ` K ) )
18 16 17 sylib
 |-  ( ph -> E. x x e. ( LBasis ` K ) )
19 14 dimval
 |-  ( ( K e. LVec /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` x ) )
20 12 19 sylan
 |-  ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` x ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lbspropd
 |-  ( ph -> ( LBasis ` K ) = ( LBasis ` L ) )
22 21 eleq2d
 |-  ( ph -> ( x e. ( LBasis ` K ) <-> x e. ( LBasis ` L ) ) )
23 22 biimpa
 |-  ( ( ph /\ x e. ( LBasis ` K ) ) -> x e. ( LBasis ` L ) )
24 eqid
 |-  ( LBasis ` L ) = ( LBasis ` L )
25 24 dimval
 |-  ( ( L e. LVec /\ x e. ( LBasis ` L ) ) -> ( dim ` L ) = ( # ` x ) )
26 13 23 25 syl2an2r
 |-  ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` L ) = ( # ` x ) )
27 20 26 eqtr4d
 |-  ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( dim ` L ) )
28 18 27 exlimddv
 |-  ( ph -> ( dim ` K ) = ( dim ` L ) )