Step |
Hyp |
Ref |
Expression |
1 |
|
dimpropd.b1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
dimpropd.b2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
dimpropd.w |
|- ( ph -> B C_ W ) |
4 |
|
dimpropd.p |
|- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
5 |
|
dimpropd.s1 |
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W ) |
6 |
|
dimpropd.s2 |
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
7 |
|
dimpropd.f |
|- F = ( Scalar ` K ) |
8 |
|
dimpropd.g |
|- G = ( Scalar ` L ) |
9 |
|
dimpropd.p1 |
|- ( ph -> P = ( Base ` F ) ) |
10 |
|
dimpropd.p2 |
|- ( ph -> P = ( Base ` G ) ) |
11 |
|
dimpropd.a |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` F ) y ) = ( x ( +g ` G ) y ) ) |
12 |
|
dimpropd.v1 |
|- ( ph -> K e. LVec ) |
13 |
|
dimpropd.v2 |
|- ( ph -> L e. LVec ) |
14 |
|
eqid |
|- ( LBasis ` K ) = ( LBasis ` K ) |
15 |
14
|
lbsex |
|- ( K e. LVec -> ( LBasis ` K ) =/= (/) ) |
16 |
12 15
|
syl |
|- ( ph -> ( LBasis ` K ) =/= (/) ) |
17 |
|
n0 |
|- ( ( LBasis ` K ) =/= (/) <-> E. x x e. ( LBasis ` K ) ) |
18 |
16 17
|
sylib |
|- ( ph -> E. x x e. ( LBasis ` K ) ) |
19 |
14
|
dimval |
|- ( ( K e. LVec /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` x ) ) |
20 |
12 19
|
sylan |
|- ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( # ` x ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lbspropd |
|- ( ph -> ( LBasis ` K ) = ( LBasis ` L ) ) |
22 |
21
|
eleq2d |
|- ( ph -> ( x e. ( LBasis ` K ) <-> x e. ( LBasis ` L ) ) ) |
23 |
22
|
biimpa |
|- ( ( ph /\ x e. ( LBasis ` K ) ) -> x e. ( LBasis ` L ) ) |
24 |
|
eqid |
|- ( LBasis ` L ) = ( LBasis ` L ) |
25 |
24
|
dimval |
|- ( ( L e. LVec /\ x e. ( LBasis ` L ) ) -> ( dim ` L ) = ( # ` x ) ) |
26 |
13 23 25
|
syl2an2r |
|- ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` L ) = ( # ` x ) ) |
27 |
20 26
|
eqtr4d |
|- ( ( ph /\ x e. ( LBasis ` K ) ) -> ( dim ` K ) = ( dim ` L ) ) |
28 |
18 27
|
exlimddv |
|- ( ph -> ( dim ` K ) = ( dim ` L ) ) |