Step |
Hyp |
Ref |
Expression |
1 |
|
rlmdim.1 |
|- V = ( ringLMod ` F ) |
2 |
|
rlmlvec |
|- ( F e. DivRing -> ( ringLMod ` F ) e. LVec ) |
3 |
1 2
|
eqeltrid |
|- ( F e. DivRing -> V e. LVec ) |
4 |
|
ssid |
|- ( Base ` F ) C_ ( Base ` F ) |
5 |
|
rlmval |
|- ( ringLMod ` F ) = ( ( subringAlg ` F ) ` ( Base ` F ) ) |
6 |
1 5
|
eqtri |
|- V = ( ( subringAlg ` F ) ` ( Base ` F ) ) |
7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
8 |
6 7
|
sradrng |
|- ( ( F e. DivRing /\ ( Base ` F ) C_ ( Base ` F ) ) -> V e. DivRing ) |
9 |
4 8
|
mpan2 |
|- ( F e. DivRing -> V e. DivRing ) |
10 |
9
|
drngringd |
|- ( F e. DivRing -> V e. Ring ) |
11 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
12 |
|
eqid |
|- ( 1r ` V ) = ( 1r ` V ) |
13 |
11 12
|
ringidcl |
|- ( V e. Ring -> ( 1r ` V ) e. ( Base ` V ) ) |
14 |
10 13
|
syl |
|- ( F e. DivRing -> ( 1r ` V ) e. ( Base ` V ) ) |
15 |
|
eqid |
|- ( 0g ` V ) = ( 0g ` V ) |
16 |
15 12
|
drngunz |
|- ( V e. DivRing -> ( 1r ` V ) =/= ( 0g ` V ) ) |
17 |
9 16
|
syl |
|- ( F e. DivRing -> ( 1r ` V ) =/= ( 0g ` V ) ) |
18 |
11 15
|
lindssn |
|- ( ( V e. LVec /\ ( 1r ` V ) e. ( Base ` V ) /\ ( 1r ` V ) =/= ( 0g ` V ) ) -> { ( 1r ` V ) } e. ( LIndS ` V ) ) |
19 |
3 14 17 18
|
syl3anc |
|- ( F e. DivRing -> { ( 1r ` V ) } e. ( LIndS ` V ) ) |
20 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
21 |
1
|
fveq2i |
|- ( LSpan ` V ) = ( LSpan ` ( ringLMod ` F ) ) |
22 |
|
rspval |
|- ( RSpan ` F ) = ( LSpan ` ( ringLMod ` F ) ) |
23 |
21 22
|
eqtr4i |
|- ( LSpan ` V ) = ( RSpan ` F ) |
24 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
25 |
23 7 24
|
rsp1 |
|- ( F e. Ring -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( Base ` F ) ) |
26 |
20 25
|
syl |
|- ( F e. DivRing -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( Base ` F ) ) |
27 |
6
|
a1i |
|- ( F e. DivRing -> V = ( ( subringAlg ` F ) ` ( Base ` F ) ) ) |
28 |
|
eqidd |
|- ( F e. DivRing -> ( 1r ` F ) = ( 1r ` F ) ) |
29 |
|
ssidd |
|- ( F e. DivRing -> ( Base ` F ) C_ ( Base ` F ) ) |
30 |
27 28 29
|
sra1r |
|- ( F e. DivRing -> ( 1r ` F ) = ( 1r ` V ) ) |
31 |
30
|
sneqd |
|- ( F e. DivRing -> { ( 1r ` F ) } = { ( 1r ` V ) } ) |
32 |
31
|
fveq2d |
|- ( F e. DivRing -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( ( LSpan ` V ) ` { ( 1r ` V ) } ) ) |
33 |
27 29
|
srabase |
|- ( F e. DivRing -> ( Base ` F ) = ( Base ` V ) ) |
34 |
26 32 33
|
3eqtr3d |
|- ( F e. DivRing -> ( ( LSpan ` V ) ` { ( 1r ` V ) } ) = ( Base ` V ) ) |
35 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
36 |
|
eqid |
|- ( LSpan ` V ) = ( LSpan ` V ) |
37 |
11 35 36
|
islbs4 |
|- ( { ( 1r ` V ) } e. ( LBasis ` V ) <-> ( { ( 1r ` V ) } e. ( LIndS ` V ) /\ ( ( LSpan ` V ) ` { ( 1r ` V ) } ) = ( Base ` V ) ) ) |
38 |
19 34 37
|
sylanbrc |
|- ( F e. DivRing -> { ( 1r ` V ) } e. ( LBasis ` V ) ) |
39 |
35
|
dimval |
|- ( ( V e. LVec /\ { ( 1r ` V ) } e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` { ( 1r ` V ) } ) ) |
40 |
3 38 39
|
syl2anc |
|- ( F e. DivRing -> ( dim ` V ) = ( # ` { ( 1r ` V ) } ) ) |
41 |
|
fvex |
|- ( 1r ` V ) e. _V |
42 |
|
hashsng |
|- ( ( 1r ` V ) e. _V -> ( # ` { ( 1r ` V ) } ) = 1 ) |
43 |
41 42
|
ax-mp |
|- ( # ` { ( 1r ` V ) } ) = 1 |
44 |
40 43
|
eqtrdi |
|- ( F e. DivRing -> ( dim ` V ) = 1 ) |