| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlmdim.1 |
⊢ 𝑉 = ( ringLMod ‘ 𝐹 ) |
| 2 |
|
rlmlvec |
⊢ ( 𝐹 ∈ DivRing → ( ringLMod ‘ 𝐹 ) ∈ LVec ) |
| 3 |
1 2
|
eqeltrid |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ LVec ) |
| 4 |
|
ssid |
⊢ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) |
| 5 |
|
rlmval |
⊢ ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
| 6 |
1 5
|
eqtri |
⊢ 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 8 |
6 7
|
sradrng |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing ) |
| 9 |
4 8
|
mpan2 |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ DivRing ) |
| 10 |
9
|
drngringd |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) |
| 13 |
11 12
|
ringidcl |
⊢ ( 𝑉 ∈ Ring → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
| 14 |
10 13
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
| 16 |
15 12
|
drngunz |
⊢ ( 𝑉 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
| 17 |
9 16
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
| 18 |
11 15
|
lindssn |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
| 19 |
3 14 17 18
|
syl3anc |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
| 20 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
| 21 |
1
|
fveq2i |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
| 22 |
|
rspval |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
| 23 |
21 22
|
eqtr4i |
⊢ ( LSpan ‘ 𝑉 ) = ( RSpan ‘ 𝐹 ) |
| 24 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 25 |
23 7 24
|
rsp1 |
⊢ ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
| 26 |
20 25
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
| 27 |
6
|
a1i |
⊢ ( 𝐹 ∈ DivRing → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) ) |
| 28 |
|
eqidd |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) ) |
| 29 |
|
ssidd |
⊢ ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) |
| 30 |
27 28 29
|
sra1r |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝑉 ) ) |
| 31 |
30
|
sneqd |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝐹 ) } = { ( 1r ‘ 𝑉 ) } ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 33 |
27 29
|
srabase |
⊢ ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) ) |
| 34 |
26 32 33
|
3eqtr3d |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) |
| 35 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
| 36 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
| 37 |
11 35 36
|
islbs4 |
⊢ ( { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) ) |
| 38 |
19 34 37
|
sylanbrc |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) |
| 39 |
35
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 40 |
3 38 39
|
syl2anc |
⊢ ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 41 |
|
fvex |
⊢ ( 1r ‘ 𝑉 ) ∈ V |
| 42 |
|
hashsng |
⊢ ( ( 1r ‘ 𝑉 ) ∈ V → ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 ) |
| 43 |
41 42
|
ax-mp |
⊢ ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 |
| 44 |
40 43
|
eqtrdi |
⊢ ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = 1 ) |