Metamath Proof Explorer


Theorem rlmdim

Description: The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023) Generalize to division rings. (Revised by SN, 22-Mar-2025)

Ref Expression
Hypothesis rlmdim.1 𝑉 = ( ringLMod ‘ 𝐹 )
Assertion rlmdim ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = 1 )

Proof

Step Hyp Ref Expression
1 rlmdim.1 𝑉 = ( ringLMod ‘ 𝐹 )
2 rlmlvec ( 𝐹 ∈ DivRing → ( ringLMod ‘ 𝐹 ) ∈ LVec )
3 1 2 eqeltrid ( 𝐹 ∈ DivRing → 𝑉 ∈ LVec )
4 ssid ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 )
5 rlmval ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) )
6 1 5 eqtri 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) )
7 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
8 6 7 sradrng ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing )
9 4 8 mpan2 ( 𝐹 ∈ DivRing → 𝑉 ∈ DivRing )
10 9 drngringd ( 𝐹 ∈ DivRing → 𝑉 ∈ Ring )
11 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
12 eqid ( 1r𝑉 ) = ( 1r𝑉 )
13 11 12 ringidcl ( 𝑉 ∈ Ring → ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) )
14 10 13 syl ( 𝐹 ∈ DivRing → ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) )
15 eqid ( 0g𝑉 ) = ( 0g𝑉 )
16 15 12 drngunz ( 𝑉 ∈ DivRing → ( 1r𝑉 ) ≠ ( 0g𝑉 ) )
17 9 16 syl ( 𝐹 ∈ DivRing → ( 1r𝑉 ) ≠ ( 0g𝑉 ) )
18 11 15 lindssn ( ( 𝑉 ∈ LVec ∧ ( 1r𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r𝑉 ) ≠ ( 0g𝑉 ) ) → { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) )
19 3 14 17 18 syl3anc ( 𝐹 ∈ DivRing → { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) )
20 drngring ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring )
21 1 fveq2i ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) )
22 rspval ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) )
23 21 22 eqtr4i ( LSpan ‘ 𝑉 ) = ( RSpan ‘ 𝐹 )
24 eqid ( 1r𝐹 ) = ( 1r𝐹 )
25 23 7 24 rsp1 ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( Base ‘ 𝐹 ) )
26 20 25 syl ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( Base ‘ 𝐹 ) )
27 6 a1i ( 𝐹 ∈ DivRing → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) )
28 eqidd ( 𝐹 ∈ DivRing → ( 1r𝐹 ) = ( 1r𝐹 ) )
29 ssidd ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) )
30 27 28 29 sra1r ( 𝐹 ∈ DivRing → ( 1r𝐹 ) = ( 1r𝑉 ) )
31 30 sneqd ( 𝐹 ∈ DivRing → { ( 1r𝐹 ) } = { ( 1r𝑉 ) } )
32 31 fveq2d ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) )
33 27 29 srabase ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) )
34 26 32 33 3eqtr3d ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) = ( Base ‘ 𝑉 ) )
35 eqid ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 )
36 eqid ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 )
37 11 35 36 islbs4 ( { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r𝑉 ) } ) = ( Base ‘ 𝑉 ) ) )
38 19 34 37 sylanbrc ( 𝐹 ∈ DivRing → { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) )
39 35 dimval ( ( 𝑉 ∈ LVec ∧ { ( 1r𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r𝑉 ) } ) )
40 3 38 39 syl2anc ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r𝑉 ) } ) )
41 fvex ( 1r𝑉 ) ∈ V
42 hashsng ( ( 1r𝑉 ) ∈ V → ( ♯ ‘ { ( 1r𝑉 ) } ) = 1 )
43 41 42 ax-mp ( ♯ ‘ { ( 1r𝑉 ) } ) = 1
44 40 43 eqtrdi ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = 1 )