Step |
Hyp |
Ref |
Expression |
1 |
|
rlmdim.1 |
⊢ 𝑉 = ( ringLMod ‘ 𝐹 ) |
2 |
|
rlmlvec |
⊢ ( 𝐹 ∈ DivRing → ( ringLMod ‘ 𝐹 ) ∈ LVec ) |
3 |
1 2
|
eqeltrid |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ LVec ) |
4 |
|
ssid |
⊢ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) |
5 |
|
rlmval |
⊢ ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
6 |
1 5
|
eqtri |
⊢ 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
8 |
6 7
|
sradrng |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing ) |
9 |
4 8
|
mpan2 |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ DivRing ) |
10 |
9
|
drngringd |
⊢ ( 𝐹 ∈ DivRing → 𝑉 ∈ Ring ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) |
13 |
11 12
|
ringidcl |
⊢ ( 𝑉 ∈ Ring → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
14 |
10 13
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
16 |
15 12
|
drngunz |
⊢ ( 𝑉 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
17 |
9 16
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
18 |
11 15
|
lindssn |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
19 |
3 14 17 18
|
syl3anc |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
20 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
21 |
1
|
fveq2i |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
22 |
|
rspval |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
23 |
21 22
|
eqtr4i |
⊢ ( LSpan ‘ 𝑉 ) = ( RSpan ‘ 𝐹 ) |
24 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
25 |
23 7 24
|
rsp1 |
⊢ ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
26 |
20 25
|
syl |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
27 |
6
|
a1i |
⊢ ( 𝐹 ∈ DivRing → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) ) |
28 |
|
eqidd |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) ) |
29 |
|
ssidd |
⊢ ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) |
30 |
27 28 29
|
sra1r |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝑉 ) ) |
31 |
30
|
sneqd |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝐹 ) } = { ( 1r ‘ 𝑉 ) } ) |
32 |
31
|
fveq2d |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) ) |
33 |
27 29
|
srabase |
⊢ ( 𝐹 ∈ DivRing → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) ) |
34 |
26 32 33
|
3eqtr3d |
⊢ ( 𝐹 ∈ DivRing → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) |
35 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
36 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
37 |
11 35 36
|
islbs4 |
⊢ ( { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) ) |
38 |
19 34 37
|
sylanbrc |
⊢ ( 𝐹 ∈ DivRing → { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) |
39 |
35
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
40 |
3 38 39
|
syl2anc |
⊢ ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
41 |
|
fvex |
⊢ ( 1r ‘ 𝑉 ) ∈ V |
42 |
|
hashsng |
⊢ ( ( 1r ‘ 𝑉 ) ∈ V → ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 ) |
43 |
41 42
|
ax-mp |
⊢ ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 |
44 |
40 43
|
eqtrdi |
⊢ ( 𝐹 ∈ DivRing → ( dim ‘ 𝑉 ) = 1 ) |