| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlmdim.1 |
⊢ 𝑉 = ( ringLMod ‘ 𝐹 ) |
| 2 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
| 3 |
2
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 5 |
4
|
ressid |
⊢ ( 𝐹 ∈ Field → ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) = 𝐹 ) |
| 6 |
5 3
|
eqeltrd |
⊢ ( 𝐹 ∈ Field → ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ) |
| 7 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
| 8 |
4
|
subrgid |
⊢ ( 𝐹 ∈ Ring → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 9 |
3 7 8
|
3syl |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) |
| 10 |
|
rlmval |
⊢ ( ringLMod ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
| 11 |
1 10
|
eqtri |
⊢ 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) |
| 12 |
|
eqid |
⊢ ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) = ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) |
| 13 |
11 12
|
sralvec |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( 𝐹 ↾s ( Base ‘ 𝐹 ) ) ∈ DivRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ 𝐹 ) ) → 𝑉 ∈ LVec ) |
| 14 |
3 6 9 13
|
syl3anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ LVec ) |
| 15 |
3 7
|
syl |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ Ring ) |
| 16 |
|
ssidd |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) |
| 17 |
11 4
|
sraring |
⊢ ( ( 𝐹 ∈ Ring ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ Ring ) |
| 18 |
15 16 17
|
syl2anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ Ring ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) |
| 21 |
19 20
|
ringidcl |
⊢ ( 𝑉 ∈ Ring → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
| 22 |
18 21
|
syl |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ) |
| 23 |
11 4
|
sradrng |
⊢ ( ( 𝐹 ∈ DivRing ∧ ( Base ‘ 𝐹 ) ⊆ ( Base ‘ 𝐹 ) ) → 𝑉 ∈ DivRing ) |
| 24 |
3 16 23
|
syl2anc |
⊢ ( 𝐹 ∈ Field → 𝑉 ∈ DivRing ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
| 26 |
25 20
|
drngunz |
⊢ ( 𝑉 ∈ DivRing → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
| 27 |
24 26
|
syl |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) |
| 28 |
19 25
|
lindssn |
⊢ ( ( 𝑉 ∈ LVec ∧ ( 1r ‘ 𝑉 ) ∈ ( Base ‘ 𝑉 ) ∧ ( 1r ‘ 𝑉 ) ≠ ( 0g ‘ 𝑉 ) ) → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
| 29 |
14 22 27 28
|
syl3anc |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ) |
| 30 |
|
rspval |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
| 31 |
1
|
fveq2i |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ ( ringLMod ‘ 𝐹 ) ) |
| 32 |
30 31
|
eqtr4i |
⊢ ( RSpan ‘ 𝐹 ) = ( LSpan ‘ 𝑉 ) |
| 33 |
32
|
fveq1i |
⊢ ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) |
| 34 |
|
eqid |
⊢ ( RSpan ‘ 𝐹 ) = ( RSpan ‘ 𝐹 ) |
| 35 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 36 |
34 4 35
|
rsp1 |
⊢ ( 𝐹 ∈ Ring → ( ( RSpan ‘ 𝐹 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
| 37 |
33 36
|
eqtr3id |
⊢ ( 𝐹 ∈ Ring → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
| 38 |
3 7 37
|
3syl |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( Base ‘ 𝐹 ) ) |
| 39 |
11
|
a1i |
⊢ ( 𝐹 ∈ Field → 𝑉 = ( ( subringAlg ‘ 𝐹 ) ‘ ( Base ‘ 𝐹 ) ) ) |
| 40 |
|
eqidd |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) ) |
| 41 |
39 40 16
|
sra1r |
⊢ ( 𝐹 ∈ Field → ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝑉 ) ) |
| 42 |
41
|
sneqd |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝐹 ) } = { ( 1r ‘ 𝑉 ) } ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝐹 ) } ) = ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 44 |
39 16
|
srabase |
⊢ ( 𝐹 ∈ Field → ( Base ‘ 𝐹 ) = ( Base ‘ 𝑉 ) ) |
| 45 |
38 43 44
|
3eqtr3d |
⊢ ( 𝐹 ∈ Field → ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) |
| 46 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
| 47 |
|
eqid |
⊢ ( LSpan ‘ 𝑉 ) = ( LSpan ‘ 𝑉 ) |
| 48 |
19 46 47
|
islbs4 |
⊢ ( { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ↔ ( { ( 1r ‘ 𝑉 ) } ∈ ( LIndS ‘ 𝑉 ) ∧ ( ( LSpan ‘ 𝑉 ) ‘ { ( 1r ‘ 𝑉 ) } ) = ( Base ‘ 𝑉 ) ) ) |
| 49 |
29 45 48
|
sylanbrc |
⊢ ( 𝐹 ∈ Field → { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) |
| 50 |
46
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ { ( 1r ‘ 𝑉 ) } ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 51 |
14 49 50
|
syl2anc |
⊢ ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) ) |
| 52 |
|
fvex |
⊢ ( 1r ‘ 𝑉 ) ∈ V |
| 53 |
|
hashsng |
⊢ ( ( 1r ‘ 𝑉 ) ∈ V → ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 ) |
| 54 |
52 53
|
ax-mp |
⊢ ( ♯ ‘ { ( 1r ‘ 𝑉 ) } ) = 1 |
| 55 |
51 54
|
eqtrdi |
⊢ ( 𝐹 ∈ Field → ( dim ‘ 𝑉 ) = 1 ) |