| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlmdim.1 |
|- V = ( ringLMod ` F ) |
| 2 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
| 3 |
2
|
simplbi |
|- ( F e. Field -> F e. DivRing ) |
| 4 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 5 |
4
|
ressid |
|- ( F e. Field -> ( F |`s ( Base ` F ) ) = F ) |
| 6 |
5 3
|
eqeltrd |
|- ( F e. Field -> ( F |`s ( Base ` F ) ) e. DivRing ) |
| 7 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
| 8 |
4
|
subrgid |
|- ( F e. Ring -> ( Base ` F ) e. ( SubRing ` F ) ) |
| 9 |
3 7 8
|
3syl |
|- ( F e. Field -> ( Base ` F ) e. ( SubRing ` F ) ) |
| 10 |
|
rlmval |
|- ( ringLMod ` F ) = ( ( subringAlg ` F ) ` ( Base ` F ) ) |
| 11 |
1 10
|
eqtri |
|- V = ( ( subringAlg ` F ) ` ( Base ` F ) ) |
| 12 |
|
eqid |
|- ( F |`s ( Base ` F ) ) = ( F |`s ( Base ` F ) ) |
| 13 |
11 12
|
sralvec |
|- ( ( F e. DivRing /\ ( F |`s ( Base ` F ) ) e. DivRing /\ ( Base ` F ) e. ( SubRing ` F ) ) -> V e. LVec ) |
| 14 |
3 6 9 13
|
syl3anc |
|- ( F e. Field -> V e. LVec ) |
| 15 |
3 7
|
syl |
|- ( F e. Field -> F e. Ring ) |
| 16 |
|
ssidd |
|- ( F e. Field -> ( Base ` F ) C_ ( Base ` F ) ) |
| 17 |
11 4
|
sraring |
|- ( ( F e. Ring /\ ( Base ` F ) C_ ( Base ` F ) ) -> V e. Ring ) |
| 18 |
15 16 17
|
syl2anc |
|- ( F e. Field -> V e. Ring ) |
| 19 |
|
eqid |
|- ( Base ` V ) = ( Base ` V ) |
| 20 |
|
eqid |
|- ( 1r ` V ) = ( 1r ` V ) |
| 21 |
19 20
|
ringidcl |
|- ( V e. Ring -> ( 1r ` V ) e. ( Base ` V ) ) |
| 22 |
18 21
|
syl |
|- ( F e. Field -> ( 1r ` V ) e. ( Base ` V ) ) |
| 23 |
11 4
|
sradrng |
|- ( ( F e. DivRing /\ ( Base ` F ) C_ ( Base ` F ) ) -> V e. DivRing ) |
| 24 |
3 16 23
|
syl2anc |
|- ( F e. Field -> V e. DivRing ) |
| 25 |
|
eqid |
|- ( 0g ` V ) = ( 0g ` V ) |
| 26 |
25 20
|
drngunz |
|- ( V e. DivRing -> ( 1r ` V ) =/= ( 0g ` V ) ) |
| 27 |
24 26
|
syl |
|- ( F e. Field -> ( 1r ` V ) =/= ( 0g ` V ) ) |
| 28 |
19 25
|
lindssn |
|- ( ( V e. LVec /\ ( 1r ` V ) e. ( Base ` V ) /\ ( 1r ` V ) =/= ( 0g ` V ) ) -> { ( 1r ` V ) } e. ( LIndS ` V ) ) |
| 29 |
14 22 27 28
|
syl3anc |
|- ( F e. Field -> { ( 1r ` V ) } e. ( LIndS ` V ) ) |
| 30 |
|
rspval |
|- ( RSpan ` F ) = ( LSpan ` ( ringLMod ` F ) ) |
| 31 |
1
|
fveq2i |
|- ( LSpan ` V ) = ( LSpan ` ( ringLMod ` F ) ) |
| 32 |
30 31
|
eqtr4i |
|- ( RSpan ` F ) = ( LSpan ` V ) |
| 33 |
32
|
fveq1i |
|- ( ( RSpan ` F ) ` { ( 1r ` F ) } ) = ( ( LSpan ` V ) ` { ( 1r ` F ) } ) |
| 34 |
|
eqid |
|- ( RSpan ` F ) = ( RSpan ` F ) |
| 35 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 36 |
34 4 35
|
rsp1 |
|- ( F e. Ring -> ( ( RSpan ` F ) ` { ( 1r ` F ) } ) = ( Base ` F ) ) |
| 37 |
33 36
|
eqtr3id |
|- ( F e. Ring -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( Base ` F ) ) |
| 38 |
3 7 37
|
3syl |
|- ( F e. Field -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( Base ` F ) ) |
| 39 |
11
|
a1i |
|- ( F e. Field -> V = ( ( subringAlg ` F ) ` ( Base ` F ) ) ) |
| 40 |
|
eqidd |
|- ( F e. Field -> ( 1r ` F ) = ( 1r ` F ) ) |
| 41 |
39 40 16
|
sra1r |
|- ( F e. Field -> ( 1r ` F ) = ( 1r ` V ) ) |
| 42 |
41
|
sneqd |
|- ( F e. Field -> { ( 1r ` F ) } = { ( 1r ` V ) } ) |
| 43 |
42
|
fveq2d |
|- ( F e. Field -> ( ( LSpan ` V ) ` { ( 1r ` F ) } ) = ( ( LSpan ` V ) ` { ( 1r ` V ) } ) ) |
| 44 |
39 16
|
srabase |
|- ( F e. Field -> ( Base ` F ) = ( Base ` V ) ) |
| 45 |
38 43 44
|
3eqtr3d |
|- ( F e. Field -> ( ( LSpan ` V ) ` { ( 1r ` V ) } ) = ( Base ` V ) ) |
| 46 |
|
eqid |
|- ( LBasis ` V ) = ( LBasis ` V ) |
| 47 |
|
eqid |
|- ( LSpan ` V ) = ( LSpan ` V ) |
| 48 |
19 46 47
|
islbs4 |
|- ( { ( 1r ` V ) } e. ( LBasis ` V ) <-> ( { ( 1r ` V ) } e. ( LIndS ` V ) /\ ( ( LSpan ` V ) ` { ( 1r ` V ) } ) = ( Base ` V ) ) ) |
| 49 |
29 45 48
|
sylanbrc |
|- ( F e. Field -> { ( 1r ` V ) } e. ( LBasis ` V ) ) |
| 50 |
46
|
dimval |
|- ( ( V e. LVec /\ { ( 1r ` V ) } e. ( LBasis ` V ) ) -> ( dim ` V ) = ( # ` { ( 1r ` V ) } ) ) |
| 51 |
14 49 50
|
syl2anc |
|- ( F e. Field -> ( dim ` V ) = ( # ` { ( 1r ` V ) } ) ) |
| 52 |
|
fvex |
|- ( 1r ` V ) e. _V |
| 53 |
|
hashsng |
|- ( ( 1r ` V ) e. _V -> ( # ` { ( 1r ` V ) } ) = 1 ) |
| 54 |
52 53
|
ax-mp |
|- ( # ` { ( 1r ` V ) } ) = 1 |
| 55 |
51 54
|
eqtrdi |
|- ( F e. Field -> ( dim ` V ) = 1 ) |