Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( LBasis ‘ 𝑉 ) = ( LBasis ‘ 𝑉 ) |
2 |
1
|
lbsex |
⊢ ( 𝑉 ∈ LVec → ( LBasis ‘ 𝑉 ) ≠ ∅ ) |
3 |
|
n0 |
⊢ ( ( LBasis ‘ 𝑉 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝑉 ∈ LVec → ∃ 𝑏 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) |
5 |
1
|
dimval |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) = ( ♯ ‘ 𝑏 ) ) |
6 |
|
hashxnn0 |
⊢ ( 𝑏 ∈ ( LBasis ‘ 𝑉 ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0* ) |
7 |
6
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( ♯ ‘ 𝑏 ) ∈ ℕ0* ) |
8 |
5 7
|
eqeltrd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑏 ∈ ( LBasis ‘ 𝑉 ) ) → ( dim ‘ 𝑉 ) ∈ ℕ0* ) |
9 |
4 8
|
exlimddv |
⊢ ( 𝑉 ∈ LVec → ( dim ‘ 𝑉 ) ∈ ℕ0* ) |