Metamath Proof Explorer


Theorem extdggt0

Description: Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion extdggt0 E /FldExt F 0 < E .:. F

Proof

Step Hyp Ref Expression
1 fldextfld1 E /FldExt F E Field
2 isfld E Field E DivRing E CRing
3 2 simplbi E Field E DivRing
4 1 3 syl E /FldExt F E DivRing
5 fldextress E /FldExt F F = E 𝑠 Base F
6 fldextfld2 E /FldExt F F Field
7 isfld F Field F DivRing F CRing
8 7 simplbi F Field F DivRing
9 6 8 syl E /FldExt F F DivRing
10 5 9 eqeltrrd E /FldExt F E 𝑠 Base F DivRing
11 eqid Base F = Base F
12 11 fldextsubrg E /FldExt F Base F SubRing E
13 eqid subringAlg E Base F = subringAlg E Base F
14 eqid E 𝑠 Base F = E 𝑠 Base F
15 13 14 sralvec E DivRing E 𝑠 Base F DivRing Base F SubRing E subringAlg E Base F LVec
16 4 10 12 15 syl3anc E /FldExt F subringAlg E Base F LVec
17 eqid Base E = Base E
18 17 subrgss Base F SubRing E Base F Base E
19 12 18 syl E /FldExt F Base F Base E
20 13 17 sradrng E DivRing Base F Base E subringAlg E Base F DivRing
21 4 19 20 syl2anc E /FldExt F subringAlg E Base F DivRing
22 drngdimgt0 subringAlg E Base F LVec subringAlg E Base F DivRing 0 < dim subringAlg E Base F
23 16 21 22 syl2anc E /FldExt F 0 < dim subringAlg E Base F
24 extdgval E /FldExt F E .:. F = dim subringAlg E Base F
25 23 24 breqtrrd E /FldExt F 0 < E .:. F