Metamath Proof Explorer


Theorem brfinext

Description: The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion brfinext ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )

Proof

Step Hyp Ref Expression
1 fldextfld1 ( 𝐸 /FldExt 𝐹𝐸 ∈ Field )
2 fldextfld2 ( 𝐸 /FldExt 𝐹𝐹 ∈ Field )
3 breq12 ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 /FldExt 𝑓𝐸 /FldExt 𝐹 ) )
4 oveq12 ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 [:] 𝑓 ) = ( 𝐸 [:] 𝐹 ) )
5 4 eleq1d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )
6 3 5 anbi12d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
7 df-finext /FinExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) }
8 6 7 brabga ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
9 1 2 8 syl2anc ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) )
10 9 bianabs ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )