Step |
Hyp |
Ref |
Expression |
1 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
2 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
3 |
|
breq12 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 /FldExt 𝑓 ↔ 𝐸 /FldExt 𝐹 ) ) |
4 |
|
oveq12 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 [:] 𝑓 ) = ( 𝐸 [:] 𝐹 ) ) |
5 |
4
|
eleq1d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) |
6 |
3 5
|
anbi12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) ) |
7 |
|
df-finext |
⊢ /FinExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 [:] 𝑓 ) ∈ ℕ0 ) } |
8 |
6 7
|
brabga |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ Field ) → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) ) |
9 |
1 2 8
|
syl2anc |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) ) |
10 |
9
|
bianabs |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) |