| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldextress |
|- ( E /FldExt F -> F = ( E |`s ( Base ` F ) ) ) |
| 2 |
1
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> F = ( E |`s ( Base ` F ) ) ) |
| 3 |
|
fldextsralvec |
|- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
| 4 |
3
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
| 5 |
|
eqid |
|- ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 6 |
5
|
lbsex |
|- ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec -> ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) ) |
| 7 |
4 6
|
syl |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) ) |
| 8 |
|
n0 |
|- ( ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) <-> E. b b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 9 |
7 8
|
sylib |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E. b b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 10 |
|
simpr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 11 |
5
|
dimval |
|- ( ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( # ` b ) ) |
| 12 |
4 11
|
sylan |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( # ` b ) ) |
| 13 |
|
extdgval |
|- ( E /FldExt F -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 14 |
13
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 15 |
|
simpr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E [:] F ) = 1 ) |
| 16 |
14 15
|
eqtr3d |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = 1 ) |
| 17 |
16
|
adantr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = 1 ) |
| 18 |
12 17
|
eqtr3d |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( # ` b ) = 1 ) |
| 19 |
|
hash1snb |
|- ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) -> ( ( # ` b ) = 1 <-> E. x b = { x } ) ) |
| 20 |
19
|
biimpa |
|- ( ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) /\ ( # ` b ) = 1 ) -> E. x b = { x } ) |
| 21 |
10 18 20
|
syl2anc |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> E. x b = { x } ) |
| 22 |
|
simpr |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 23 |
|
simplr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> b = { x } ) |
| 24 |
|
eqidd |
|- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 25 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 26 |
25
|
fldextsubrg |
|- ( E /FldExt F -> ( Base ` F ) e. ( SubRing ` E ) ) |
| 27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 28 |
27
|
subrgss |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( Base ` F ) C_ ( Base ` E ) ) |
| 29 |
26 28
|
syl |
|- ( E /FldExt F -> ( Base ` F ) C_ ( Base ` E ) ) |
| 30 |
24 29
|
sravsca |
|- ( E /FldExt F -> ( .r ` E ) = ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 31 |
30
|
eqcomd |
|- ( E /FldExt F -> ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .r ` E ) ) |
| 32 |
31
|
ad5antr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i e. b ) -> ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .r ` E ) ) |
| 33 |
32
|
oveqd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i e. b ) -> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) = ( ( v ` i ) ( .r ` E ) i ) ) |
| 34 |
23 33
|
mpteq12dva |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) = ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) |
| 35 |
34
|
oveq2d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
| 36 |
|
eqid |
|- ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) |
| 37 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
| 38 |
|
isfld |
|- ( E e. Field <-> ( E e. DivRing /\ E e. CRing ) ) |
| 39 |
38
|
simplbi |
|- ( E e. Field -> E e. DivRing ) |
| 40 |
37 39
|
syl |
|- ( E /FldExt F -> E e. DivRing ) |
| 41 |
40
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> E e. DivRing ) |
| 42 |
26
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
| 43 |
|
eqid |
|- ( E |`s ( Base ` F ) ) = ( E |`s ( Base ` F ) ) |
| 44 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
| 45 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
| 46 |
45
|
simplbi |
|- ( F e. Field -> F e. DivRing ) |
| 47 |
44 46
|
syl |
|- ( E /FldExt F -> F e. DivRing ) |
| 48 |
1 47
|
eqeltrrd |
|- ( E /FldExt F -> ( E |`s ( Base ` F ) ) e. DivRing ) |
| 49 |
48
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E |`s ( Base ` F ) ) e. DivRing ) |
| 50 |
|
simpr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 51 |
36 41 42 43 49 50
|
drgextgsum |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 52 |
51
|
adantlr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 54 |
|
drngring |
|- ( E e. DivRing -> E e. Ring ) |
| 55 |
37 39 54
|
3syl |
|- ( E /FldExt F -> E e. Ring ) |
| 56 |
|
ringmnd |
|- ( E e. Ring -> E e. Mnd ) |
| 57 |
55 56
|
syl |
|- ( E /FldExt F -> E e. Mnd ) |
| 58 |
57
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> E e. Mnd ) |
| 59 |
|
vex |
|- x e. _V |
| 60 |
59
|
a1i |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. _V ) |
| 61 |
55
|
ad3antrrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> E e. Ring ) |
| 62 |
61
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> E e. Ring ) |
| 63 |
29
|
ad3antrrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` F ) C_ ( Base ` E ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( Base ` F ) C_ ( Base ` E ) ) |
| 65 |
|
elmapi |
|- ( v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) -> v : b --> ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 66 |
65
|
adantl |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> v : b --> ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 67 |
|
vsnid |
|- x e. { x } |
| 68 |
67 23
|
eleqtrrid |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. b ) |
| 69 |
66 68
|
ffvelcdmd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 70 |
24 29
|
srasca |
|- ( E /FldExt F -> ( E |`s ( Base ` F ) ) = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 71 |
1 70
|
eqtrd |
|- ( E /FldExt F -> F = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 72 |
71
|
fveq2d |
|- ( E /FldExt F -> ( Base ` F ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 73 |
72
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( Base ` F ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 74 |
69 73
|
eleqtrrd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` F ) ) |
| 75 |
64 74
|
sseldd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` E ) ) |
| 76 |
|
simpr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b = { x } ) |
| 77 |
|
simplr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 78 |
|
eqid |
|- ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 79 |
78 5
|
lbsss |
|- ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) -> b C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 80 |
77 79
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 81 |
76 80
|
eqsstrrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> { x } C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 82 |
59
|
snss |
|- ( x e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> { x } C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 83 |
81 82
|
sylibr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 84 |
|
eqidd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 85 |
84 63
|
srabase |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 86 |
83 85
|
eleqtrrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` E ) ) |
| 87 |
86
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. ( Base ` E ) ) |
| 88 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
| 89 |
27 88
|
ringcl |
|- ( ( E e. Ring /\ ( v ` x ) e. ( Base ` E ) /\ x e. ( Base ` E ) ) -> ( ( v ` x ) ( .r ` E ) x ) e. ( Base ` E ) ) |
| 90 |
62 75 87 89
|
syl3anc |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` E ) x ) e. ( Base ` E ) ) |
| 91 |
|
simpr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> i = x ) |
| 92 |
91
|
fveq2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> ( v ` i ) = ( v ` x ) ) |
| 93 |
92 91
|
oveq12d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> ( ( v ` i ) ( .r ` E ) i ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 94 |
27 58 60 90 93
|
gsumsnd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 95 |
1
|
fveq2d |
|- ( E /FldExt F -> ( .r ` F ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
| 96 |
43 88
|
ressmulr |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
| 97 |
26 96
|
syl |
|- ( E /FldExt F -> ( .r ` E ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
| 98 |
95 97
|
eqtr4d |
|- ( E /FldExt F -> ( .r ` F ) = ( .r ` E ) ) |
| 99 |
98
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( .r ` F ) = ( .r ` E ) ) |
| 100 |
99
|
oveqd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` F ) x ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 101 |
94 100
|
eqtr4d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
| 102 |
35 53 101
|
3eqtr3d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
| 103 |
102
|
adantlr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
| 104 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
| 105 |
44 46 104
|
3syl |
|- ( E /FldExt F -> F e. Ring ) |
| 106 |
105
|
ad5antr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> F e. Ring ) |
| 107 |
74
|
adantlr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` F ) ) |
| 108 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
| 109 |
|
eqid |
|- ( Unit ` E ) = ( Unit ` E ) |
| 110 |
|
eqid |
|- ( invr ` E ) = ( invr ` E ) |
| 111 |
|
simp-5l |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E /FldExt F ) |
| 112 |
111 55
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. Ring ) |
| 113 |
87
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Base ` E ) ) |
| 114 |
75
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( v ` x ) e. ( Base ` E ) ) |
| 115 |
38
|
simprbi |
|- ( E e. Field -> E e. CRing ) |
| 116 |
111 37 115
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. CRing ) |
| 117 |
27 88
|
crngcom |
|- ( ( E e. CRing /\ x e. ( Base ` E ) /\ ( v ` x ) e. ( Base ` E ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 118 |
116 113 114 117
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 119 |
|
simpr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 120 |
52
|
ad3antrrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
| 121 |
34
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) = ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) |
| 122 |
121
|
oveq2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
| 123 |
119 120 122
|
3eqtr2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
| 124 |
94
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 125 |
123 124
|
eqtrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( ( v ` x ) ( .r ` E ) x ) ) |
| 126 |
118 125
|
eqtr4d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( 1r ` E ) ) |
| 127 |
125
|
eqcomd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( v ` x ) ( .r ` E ) x ) = ( 1r ` E ) ) |
| 128 |
27 88 108 109 110 112 113 114 126 127
|
invrvald |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x e. ( Unit ` E ) /\ ( ( invr ` E ) ` x ) = ( v ` x ) ) ) |
| 129 |
128
|
simpld |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Unit ` E ) ) |
| 130 |
109 110
|
unitinvinv |
|- ( ( E e. Ring /\ x e. ( Unit ` E ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) = x ) |
| 131 |
62 129 130
|
syl2an2r |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) = x ) |
| 132 |
111 37 39
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. DivRing ) |
| 133 |
111 26
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
| 134 |
111 1
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> F = ( E |`s ( Base ` F ) ) ) |
| 135 |
111 44 46
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> F e. DivRing ) |
| 136 |
134 135
|
eqeltrrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E |`s ( Base ` F ) ) e. DivRing ) |
| 137 |
128
|
simprd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) = ( v ` x ) ) |
| 138 |
74
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( v ` x ) e. ( Base ` F ) ) |
| 139 |
137 138
|
eqeltrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) e. ( Base ` F ) ) |
| 140 |
|
eqidd |
|- ( E /FldExt F -> ( 0g ` E ) = ( 0g ` E ) ) |
| 141 |
24 140 29
|
sralmod0 |
|- ( E /FldExt F -> ( 0g ` E ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 142 |
141
|
ad2antrr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( 0g ` E ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 143 |
5
|
lbslinds |
|- ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) C_ ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 144 |
143 10
|
sselid |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 145 |
|
eqid |
|- ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 146 |
145
|
0nellinds |
|- ( ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec /\ b e. ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. b ) |
| 147 |
4 144 146
|
syl2an2r |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. b ) |
| 148 |
142 147
|
eqneltrd |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` E ) e. b ) |
| 149 |
148
|
ad3antrrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> -. ( 0g ` E ) e. b ) |
| 150 |
|
nelne2 |
|- ( ( x e. b /\ -. ( 0g ` E ) e. b ) -> x =/= ( 0g ` E ) ) |
| 151 |
68 149 150
|
syl2an2r |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x =/= ( 0g ` E ) ) |
| 152 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 153 |
27 152 110
|
drnginvrn0 |
|- ( ( E e. DivRing /\ x e. ( Base ` E ) /\ x =/= ( 0g ` E ) ) -> ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) |
| 154 |
132 113 151 153
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) |
| 155 |
|
eldifsn |
|- ( ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) <-> ( ( ( invr ` E ) ` x ) e. ( Base ` F ) /\ ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) ) |
| 156 |
139 154 155
|
sylanbrc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) |
| 157 |
|
fveq2 |
|- ( a = ( ( invr ` E ) ` x ) -> ( ( invr ` E ) ` a ) = ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) ) |
| 158 |
157
|
eleq1d |
|- ( a = ( ( invr ` E ) ` x ) -> ( ( ( invr ` E ) ` a ) e. ( Base ` F ) <-> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) ) |
| 159 |
43 152 110
|
issubdrg |
|- ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) -> ( ( E |`s ( Base ` F ) ) e. DivRing <-> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) ) |
| 160 |
159
|
biimpa |
|- ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) -> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) |
| 161 |
160
|
adantr |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) |
| 162 |
|
simpr |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) |
| 163 |
158 161 162
|
rspcdva |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) |
| 164 |
132 133 136 156 163
|
syl1111anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) |
| 165 |
131 164
|
eqeltrrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Base ` F ) ) |
| 166 |
165
|
adantrl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) -> x e. ( Base ` F ) ) |
| 167 |
27 108
|
ringidcl |
|- ( E e. Ring -> ( 1r ` E ) e. ( Base ` E ) ) |
| 168 |
61 167
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( 1r ` E ) e. ( Base ` E ) ) |
| 169 |
168 85
|
eleqtrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( 1r ` E ) e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 170 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 171 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 172 |
|
eqid |
|- ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) = ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 173 |
|
eqid |
|- ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 174 |
4
|
ad2antrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
| 175 |
|
lveclmod |
|- ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LMod ) |
| 176 |
174 175
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LMod ) |
| 177 |
78 170 171 172 173 176 77
|
lbslsp |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( 1r ` E ) e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
| 178 |
169 177
|
mpbid |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) |
| 179 |
166 178
|
r19.29a |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` F ) ) |
| 180 |
179
|
ad2antrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. ( Base ` F ) ) |
| 181 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 182 |
25 181
|
ringcl |
|- ( ( F e. Ring /\ ( v ` x ) e. ( Base ` F ) /\ x e. ( Base ` F ) ) -> ( ( v ` x ) ( .r ` F ) x ) e. ( Base ` F ) ) |
| 183 |
106 107 180 182
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` F ) x ) e. ( Base ` F ) ) |
| 184 |
103 183
|
eqeltrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) e. ( Base ` F ) ) |
| 185 |
184
|
ad2antrr |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) e. ( Base ` F ) ) |
| 186 |
22 185
|
eqeltrd |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> u e. ( Base ` F ) ) |
| 187 |
186
|
anasss |
|- ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) -> u e. ( Base ` F ) ) |
| 188 |
85
|
eleq2d |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) <-> u e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
| 189 |
78 170 171 172 173 176 77
|
lbslsp |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
| 190 |
188 189
|
bitrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
| 191 |
190
|
biimpa |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) -> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) |
| 192 |
187 191
|
r19.29a |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) -> u e. ( Base ` F ) ) |
| 193 |
192
|
ex |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) -> u e. ( Base ` F ) ) ) |
| 194 |
193
|
ssrdv |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` E ) C_ ( Base ` F ) ) |
| 195 |
21 194
|
exlimddv |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( Base ` E ) C_ ( Base ` F ) ) |
| 196 |
9 195
|
exlimddv |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( Base ` E ) C_ ( Base ` F ) ) |
| 197 |
|
simpr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( Base ` E ) C_ ( Base ` F ) ) |
| 198 |
37
|
ad2antrr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> E e. Field ) |
| 199 |
|
fvexd |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( Base ` F ) e. _V ) |
| 200 |
43 27
|
ressid2 |
|- ( ( ( Base ` E ) C_ ( Base ` F ) /\ E e. Field /\ ( Base ` F ) e. _V ) -> ( E |`s ( Base ` F ) ) = E ) |
| 201 |
197 198 199 200
|
syl3anc |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( E |`s ( Base ` F ) ) = E ) |
| 202 |
196 201
|
mpdan |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E |`s ( Base ` F ) ) = E ) |
| 203 |
2 202
|
eqtr2d |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E = F ) |