Step |
Hyp |
Ref |
Expression |
1 |
|
fldextress |
|- ( E /FldExt F -> F = ( E |`s ( Base ` F ) ) ) |
2 |
1
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> F = ( E |`s ( Base ` F ) ) ) |
3 |
|
fldextsralvec |
|- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
4 |
3
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
5 |
|
eqid |
|- ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
6 |
5
|
lbsex |
|- ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec -> ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) ) |
7 |
4 6
|
syl |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) ) |
8 |
|
n0 |
|- ( ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) =/= (/) <-> E. b b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
9 |
7 8
|
sylib |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E. b b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
10 |
|
simpr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
11 |
5
|
dimval |
|- ( ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( # ` b ) ) |
12 |
4 11
|
sylan |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( # ` b ) ) |
13 |
|
extdgval |
|- ( E /FldExt F -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
14 |
13
|
adantr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
15 |
|
simpr |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E [:] F ) = 1 ) |
16 |
14 15
|
eqtr3d |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = 1 ) |
17 |
16
|
adantr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = 1 ) |
18 |
12 17
|
eqtr3d |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( # ` b ) = 1 ) |
19 |
|
hash1snb |
|- ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) -> ( ( # ` b ) = 1 <-> E. x b = { x } ) ) |
20 |
19
|
biimpa |
|- ( ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) /\ ( # ` b ) = 1 ) -> E. x b = { x } ) |
21 |
10 18 20
|
syl2anc |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> E. x b = { x } ) |
22 |
|
simpr |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
23 |
|
simplr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> b = { x } ) |
24 |
|
eqidd |
|- ( E /FldExt F -> ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
25 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
26 |
25
|
fldextsubrg |
|- ( E /FldExt F -> ( Base ` F ) e. ( SubRing ` E ) ) |
27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
28 |
27
|
subrgss |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( Base ` F ) C_ ( Base ` E ) ) |
29 |
26 28
|
syl |
|- ( E /FldExt F -> ( Base ` F ) C_ ( Base ` E ) ) |
30 |
24 29
|
sravsca |
|- ( E /FldExt F -> ( .r ` E ) = ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
31 |
30
|
eqcomd |
|- ( E /FldExt F -> ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .r ` E ) ) |
32 |
31
|
ad5antr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i e. b ) -> ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .r ` E ) ) |
33 |
32
|
oveqd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i e. b ) -> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) = ( ( v ` i ) ( .r ` E ) i ) ) |
34 |
23 33
|
mpteq12dva |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) = ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) |
35 |
34
|
oveq2d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
36 |
|
eqid |
|- ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) |
37 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
38 |
|
isfld |
|- ( E e. Field <-> ( E e. DivRing /\ E e. CRing ) ) |
39 |
38
|
simplbi |
|- ( E e. Field -> E e. DivRing ) |
40 |
37 39
|
syl |
|- ( E /FldExt F -> E e. DivRing ) |
41 |
40
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> E e. DivRing ) |
42 |
26
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
43 |
|
eqid |
|- ( E |`s ( Base ` F ) ) = ( E |`s ( Base ` F ) ) |
44 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
45 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
46 |
45
|
simplbi |
|- ( F e. Field -> F e. DivRing ) |
47 |
44 46
|
syl |
|- ( E /FldExt F -> F e. DivRing ) |
48 |
1 47
|
eqeltrrd |
|- ( E /FldExt F -> ( E |`s ( Base ` F ) ) e. DivRing ) |
49 |
48
|
adantr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E |`s ( Base ` F ) ) e. DivRing ) |
50 |
|
simpr |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
51 |
36 41 42 43 49 50
|
drgextgsum |
|- ( ( E /FldExt F /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
52 |
51
|
adantlr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
54 |
|
drngring |
|- ( E e. DivRing -> E e. Ring ) |
55 |
37 39 54
|
3syl |
|- ( E /FldExt F -> E e. Ring ) |
56 |
|
ringmnd |
|- ( E e. Ring -> E e. Mnd ) |
57 |
55 56
|
syl |
|- ( E /FldExt F -> E e. Mnd ) |
58 |
57
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> E e. Mnd ) |
59 |
|
vex |
|- x e. _V |
60 |
59
|
a1i |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. _V ) |
61 |
55
|
ad3antrrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> E e. Ring ) |
62 |
61
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> E e. Ring ) |
63 |
29
|
ad3antrrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` F ) C_ ( Base ` E ) ) |
64 |
63
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( Base ` F ) C_ ( Base ` E ) ) |
65 |
|
elmapi |
|- ( v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) -> v : b --> ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
66 |
65
|
adantl |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> v : b --> ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
67 |
|
vsnid |
|- x e. { x } |
68 |
67 23
|
eleqtrrid |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. b ) |
69 |
66 68
|
ffvelrnd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
70 |
24 29
|
srasca |
|- ( E /FldExt F -> ( E |`s ( Base ` F ) ) = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
71 |
1 70
|
eqtrd |
|- ( E /FldExt F -> F = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
72 |
71
|
fveq2d |
|- ( E /FldExt F -> ( Base ` F ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
73 |
72
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( Base ` F ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
74 |
69 73
|
eleqtrrd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` F ) ) |
75 |
64 74
|
sseldd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` E ) ) |
76 |
|
simpr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b = { x } ) |
77 |
|
simplr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
78 |
|
eqid |
|- ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
79 |
78 5
|
lbsss |
|- ( b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) -> b C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
80 |
77 79
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> b C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
81 |
76 80
|
eqsstrrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> { x } C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
82 |
59
|
snss |
|- ( x e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> { x } C_ ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
83 |
81 82
|
sylibr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
84 |
|
eqidd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) = ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
85 |
84 63
|
srabase |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
86 |
83 85
|
eleqtrrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` E ) ) |
87 |
86
|
adantr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. ( Base ` E ) ) |
88 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
89 |
27 88
|
ringcl |
|- ( ( E e. Ring /\ ( v ` x ) e. ( Base ` E ) /\ x e. ( Base ` E ) ) -> ( ( v ` x ) ( .r ` E ) x ) e. ( Base ` E ) ) |
90 |
62 75 87 89
|
syl3anc |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` E ) x ) e. ( Base ` E ) ) |
91 |
|
simpr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> i = x ) |
92 |
91
|
fveq2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> ( v ` i ) = ( v ` x ) ) |
93 |
92 91
|
oveq12d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ i = x ) -> ( ( v ` i ) ( .r ` E ) i ) = ( ( v ` x ) ( .r ` E ) x ) ) |
94 |
27 58 60 90 93
|
gsumsnd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
95 |
1
|
fveq2d |
|- ( E /FldExt F -> ( .r ` F ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
96 |
43 88
|
ressmulr |
|- ( ( Base ` F ) e. ( SubRing ` E ) -> ( .r ` E ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
97 |
26 96
|
syl |
|- ( E /FldExt F -> ( .r ` E ) = ( .r ` ( E |`s ( Base ` F ) ) ) ) |
98 |
95 97
|
eqtr4d |
|- ( E /FldExt F -> ( .r ` F ) = ( .r ` E ) ) |
99 |
98
|
ad4antr |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( .r ` F ) = ( .r ` E ) ) |
100 |
99
|
oveqd |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` F ) x ) = ( ( v ` x ) ( .r ` E ) x ) ) |
101 |
94 100
|
eqtr4d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
102 |
35 53 101
|
3eqtr3d |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
103 |
102
|
adantlr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( v ` x ) ( .r ` F ) x ) ) |
104 |
|
drngring |
|- ( F e. DivRing -> F e. Ring ) |
105 |
44 46 104
|
3syl |
|- ( E /FldExt F -> F e. Ring ) |
106 |
105
|
ad5antr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> F e. Ring ) |
107 |
74
|
adantlr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( v ` x ) e. ( Base ` F ) ) |
108 |
|
eqid |
|- ( 1r ` E ) = ( 1r ` E ) |
109 |
|
eqid |
|- ( Unit ` E ) = ( Unit ` E ) |
110 |
|
eqid |
|- ( invr ` E ) = ( invr ` E ) |
111 |
|
simp-5l |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E /FldExt F ) |
112 |
111 55
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. Ring ) |
113 |
87
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Base ` E ) ) |
114 |
75
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( v ` x ) e. ( Base ` E ) ) |
115 |
38
|
simprbi |
|- ( E e. Field -> E e. CRing ) |
116 |
111 37 115
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. CRing ) |
117 |
27 88
|
crngcom |
|- ( ( E e. CRing /\ x e. ( Base ` E ) /\ ( v ` x ) e. ( Base ` E ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
118 |
116 113 114 117
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
119 |
|
simpr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
120 |
52
|
ad3antrrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) |
121 |
34
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) = ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) |
122 |
121
|
oveq2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
123 |
119 120 122
|
3eqtr2d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) ) |
124 |
94
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E gsum ( i e. { x } |-> ( ( v ` i ) ( .r ` E ) i ) ) ) = ( ( v ` x ) ( .r ` E ) x ) ) |
125 |
123 124
|
eqtrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( 1r ` E ) = ( ( v ` x ) ( .r ` E ) x ) ) |
126 |
118 125
|
eqtr4d |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x ( .r ` E ) ( v ` x ) ) = ( 1r ` E ) ) |
127 |
125
|
eqcomd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( v ` x ) ( .r ` E ) x ) = ( 1r ` E ) ) |
128 |
27 88 108 109 110 112 113 114 126 127
|
invrvald |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( x e. ( Unit ` E ) /\ ( ( invr ` E ) ` x ) = ( v ` x ) ) ) |
129 |
128
|
simpld |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Unit ` E ) ) |
130 |
109 110
|
unitinvinv |
|- ( ( E e. Ring /\ x e. ( Unit ` E ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) = x ) |
131 |
62 129 130
|
syl2an2r |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) = x ) |
132 |
111 37 39
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> E e. DivRing ) |
133 |
111 26
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( Base ` F ) e. ( SubRing ` E ) ) |
134 |
111 1
|
syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> F = ( E |`s ( Base ` F ) ) ) |
135 |
111 44 46
|
3syl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> F e. DivRing ) |
136 |
134 135
|
eqeltrrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( E |`s ( Base ` F ) ) e. DivRing ) |
137 |
128
|
simprd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) = ( v ` x ) ) |
138 |
74
|
adantr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( v ` x ) e. ( Base ` F ) ) |
139 |
137 138
|
eqeltrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) e. ( Base ` F ) ) |
140 |
|
eqidd |
|- ( E /FldExt F -> ( 0g ` E ) = ( 0g ` E ) ) |
141 |
24 140 29
|
sralmod0 |
|- ( E /FldExt F -> ( 0g ` E ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
142 |
141
|
ad2antrr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( 0g ` E ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
143 |
5
|
lbslinds |
|- ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) C_ ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
144 |
143 10
|
sselid |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> b e. ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
145 |
|
eqid |
|- ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
146 |
145
|
0nellinds |
|- ( ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec /\ b e. ( LIndS ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. b ) |
147 |
4 144 146
|
syl2an2r |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. b ) |
148 |
142 147
|
eqneltrd |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> -. ( 0g ` E ) e. b ) |
149 |
148
|
ad3antrrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> -. ( 0g ` E ) e. b ) |
150 |
|
nelne2 |
|- ( ( x e. b /\ -. ( 0g ` E ) e. b ) -> x =/= ( 0g ` E ) ) |
151 |
68 149 150
|
syl2an2r |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x =/= ( 0g ` E ) ) |
152 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
153 |
27 152 110
|
drnginvrn0 |
|- ( ( E e. DivRing /\ x e. ( Base ` E ) /\ x =/= ( 0g ` E ) ) -> ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) |
154 |
132 113 151 153
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) |
155 |
|
eldifsn |
|- ( ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) <-> ( ( ( invr ` E ) ` x ) e. ( Base ` F ) /\ ( ( invr ` E ) ` x ) =/= ( 0g ` E ) ) ) |
156 |
139 154 155
|
sylanbrc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) |
157 |
|
fveq2 |
|- ( a = ( ( invr ` E ) ` x ) -> ( ( invr ` E ) ` a ) = ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) ) |
158 |
157
|
eleq1d |
|- ( a = ( ( invr ` E ) ` x ) -> ( ( ( invr ` E ) ` a ) e. ( Base ` F ) <-> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) ) |
159 |
43 152 110
|
issubdrg |
|- ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) -> ( ( E |`s ( Base ` F ) ) e. DivRing <-> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) ) |
160 |
159
|
biimpa |
|- ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) -> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) |
161 |
160
|
adantr |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> A. a e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ( ( invr ` E ) ` a ) e. ( Base ` F ) ) |
162 |
|
simpr |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) |
163 |
158 161 162
|
rspcdva |
|- ( ( ( ( E e. DivRing /\ ( Base ` F ) e. ( SubRing ` E ) ) /\ ( E |`s ( Base ` F ) ) e. DivRing ) /\ ( ( invr ` E ) ` x ) e. ( ( Base ` F ) \ { ( 0g ` E ) } ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) |
164 |
132 133 136 156 163
|
syl1111anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( invr ` E ) ` ( ( invr ` E ) ` x ) ) e. ( Base ` F ) ) |
165 |
131 164
|
eqeltrrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> x e. ( Base ` F ) ) |
166 |
165
|
adantrl |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) -> x e. ( Base ` F ) ) |
167 |
27 108
|
ringidcl |
|- ( E e. Ring -> ( 1r ` E ) e. ( Base ` E ) ) |
168 |
61 167
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( 1r ` E ) e. ( Base ` E ) ) |
169 |
168 85
|
eleqtrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( 1r ` E ) e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
170 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
171 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
172 |
|
eqid |
|- ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) = ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
173 |
|
eqid |
|- ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
174 |
4
|
ad2antrr |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec ) |
175 |
|
lveclmod |
|- ( ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LVec -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LMod ) |
176 |
174 175
|
syl |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( subringAlg ` E ) ` ( Base ` F ) ) e. LMod ) |
177 |
78 170 171 172 173 176 77
|
lbslsp |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( ( 1r ` E ) e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
178 |
169 177
|
mpbid |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ ( 1r ` E ) = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) |
179 |
166 178
|
r19.29a |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> x e. ( Base ` F ) ) |
180 |
179
|
ad2antrr |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> x e. ( Base ` F ) ) |
181 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
182 |
25 181
|
ringcl |
|- ( ( F e. Ring /\ ( v ` x ) e. ( Base ` F ) /\ x e. ( Base ` F ) ) -> ( ( v ` x ) ( .r ` F ) x ) e. ( Base ` F ) ) |
183 |
106 107 180 182
|
syl3anc |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( v ` x ) ( .r ` F ) x ) e. ( Base ` F ) ) |
184 |
103 183
|
eqeltrd |
|- ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) e. ( Base ` F ) ) |
185 |
184
|
ad2antrr |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) e. ( Base ` F ) ) |
186 |
22 185
|
eqeltrd |
|- ( ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) -> u e. ( Base ` F ) ) |
187 |
186
|
anasss |
|- ( ( ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) /\ v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ) /\ ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) -> u e. ( Base ` F ) ) |
188 |
85
|
eleq2d |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) <-> u e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ) |
189 |
78 170 171 172 173 176 77
|
lbslsp |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
190 |
188 189
|
bitrd |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) <-> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) ) |
191 |
190
|
biimpa |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) -> E. v e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) ^m b ) ( v finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ u = ( ( ( subringAlg ` E ) ` ( Base ` F ) ) gsum ( i e. b |-> ( ( v ` i ) ( .s ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) i ) ) ) ) ) |
192 |
187 191
|
r19.29a |
|- ( ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) /\ u e. ( Base ` E ) ) -> u e. ( Base ` F ) ) |
193 |
192
|
ex |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( u e. ( Base ` E ) -> u e. ( Base ` F ) ) ) |
194 |
193
|
ssrdv |
|- ( ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) /\ b = { x } ) -> ( Base ` E ) C_ ( Base ` F ) ) |
195 |
21 194
|
exlimddv |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) -> ( Base ` E ) C_ ( Base ` F ) ) |
196 |
9 195
|
exlimddv |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( Base ` E ) C_ ( Base ` F ) ) |
197 |
|
simpr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( Base ` E ) C_ ( Base ` F ) ) |
198 |
37
|
ad2antrr |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> E e. Field ) |
199 |
|
fvexd |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( Base ` F ) e. _V ) |
200 |
43 27
|
ressid2 |
|- ( ( ( Base ` E ) C_ ( Base ` F ) /\ E e. Field /\ ( Base ` F ) e. _V ) -> ( E |`s ( Base ` F ) ) = E ) |
201 |
197 198 199 200
|
syl3anc |
|- ( ( ( E /FldExt F /\ ( E [:] F ) = 1 ) /\ ( Base ` E ) C_ ( Base ` F ) ) -> ( E |`s ( Base ` F ) ) = E ) |
202 |
196 201
|
mpdan |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> ( E |`s ( Base ` F ) ) = E ) |
203 |
2 202
|
eqtr2d |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E = F ) |