Metamath Proof Explorer


Theorem gsumsnd

Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnd.b
|- B = ( Base ` G )
gsumsnd.g
|- ( ph -> G e. Mnd )
gsumsnd.m
|- ( ph -> M e. V )
gsumsnd.c
|- ( ph -> C e. B )
gsumsnd.s
|- ( ( ph /\ k = M ) -> A = C )
Assertion gsumsnd
|- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C )

Proof

Step Hyp Ref Expression
1 gsumsnd.b
 |-  B = ( Base ` G )
2 gsumsnd.g
 |-  ( ph -> G e. Mnd )
3 gsumsnd.m
 |-  ( ph -> M e. V )
4 gsumsnd.c
 |-  ( ph -> C e. B )
5 gsumsnd.s
 |-  ( ( ph /\ k = M ) -> A = C )
6 nfv
 |-  F/ k ph
7 nfcv
 |-  F/_ k C
8 1 2 3 4 5 6 7 gsumsnfd
 |-  ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C )