Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( ( # ` V ) = 1 -> ( # ` V ) = 1 ) |
2 |
|
hash1 |
|- ( # ` 1o ) = 1 |
3 |
1 2
|
eqtr4di |
|- ( ( # ` V ) = 1 -> ( # ` V ) = ( # ` 1o ) ) |
4 |
3
|
adantl |
|- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> ( # ` V ) = ( # ` 1o ) ) |
5 |
|
1onn |
|- 1o e. _om |
6 |
|
nnfi |
|- ( 1o e. _om -> 1o e. Fin ) |
7 |
5 6
|
mp1i |
|- ( ( # ` V ) = 1 -> 1o e. Fin ) |
8 |
|
hashen |
|- ( ( V e. Fin /\ 1o e. Fin ) -> ( ( # ` V ) = ( # ` 1o ) <-> V ~~ 1o ) ) |
9 |
7 8
|
sylan2 |
|- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> ( ( # ` V ) = ( # ` 1o ) <-> V ~~ 1o ) ) |
10 |
4 9
|
mpbid |
|- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> V ~~ 1o ) |
11 |
|
en1 |
|- ( V ~~ 1o <-> E. a V = { a } ) |
12 |
10 11
|
sylib |
|- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> E. a V = { a } ) |
13 |
12
|
ex |
|- ( V e. Fin -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) |
14 |
13
|
a1d |
|- ( V e. Fin -> ( V e. W -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) ) |
15 |
|
hashinf |
|- ( ( V e. W /\ -. V e. Fin ) -> ( # ` V ) = +oo ) |
16 |
|
eqeq1 |
|- ( ( # ` V ) = +oo -> ( ( # ` V ) = 1 <-> +oo = 1 ) ) |
17 |
|
1re |
|- 1 e. RR |
18 |
|
renepnf |
|- ( 1 e. RR -> 1 =/= +oo ) |
19 |
|
df-ne |
|- ( 1 =/= +oo <-> -. 1 = +oo ) |
20 |
|
pm2.21 |
|- ( -. 1 = +oo -> ( 1 = +oo -> E. a V = { a } ) ) |
21 |
19 20
|
sylbi |
|- ( 1 =/= +oo -> ( 1 = +oo -> E. a V = { a } ) ) |
22 |
17 18 21
|
mp2b |
|- ( 1 = +oo -> E. a V = { a } ) |
23 |
22
|
eqcoms |
|- ( +oo = 1 -> E. a V = { a } ) |
24 |
16 23
|
syl6bi |
|- ( ( # ` V ) = +oo -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) |
25 |
15 24
|
syl |
|- ( ( V e. W /\ -. V e. Fin ) -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) |
26 |
25
|
expcom |
|- ( -. V e. Fin -> ( V e. W -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) ) |
27 |
14 26
|
pm2.61i |
|- ( V e. W -> ( ( # ` V ) = 1 -> E. a V = { a } ) ) |
28 |
|
fveq2 |
|- ( V = { a } -> ( # ` V ) = ( # ` { a } ) ) |
29 |
|
hashsng |
|- ( a e. _V -> ( # ` { a } ) = 1 ) |
30 |
29
|
elv |
|- ( # ` { a } ) = 1 |
31 |
28 30
|
eqtrdi |
|- ( V = { a } -> ( # ` V ) = 1 ) |
32 |
31
|
exlimiv |
|- ( E. a V = { a } -> ( # ` V ) = 1 ) |
33 |
27 32
|
impbid1 |
|- ( V e. W -> ( ( # ` V ) = 1 <-> E. a V = { a } ) ) |