Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsp.v |
|- B = ( Base ` M ) |
2 |
|
lbslsp.k |
|- K = ( Base ` S ) |
3 |
|
lbslsp.s |
|- S = ( Scalar ` M ) |
4 |
|
lbslsp.z |
|- .0. = ( 0g ` S ) |
5 |
|
lbslsp.t |
|- .x. = ( .s ` M ) |
6 |
|
lbslsp.m |
|- ( ph -> M e. LMod ) |
7 |
|
lbslsp.1 |
|- ( ph -> V e. ( LBasis ` M ) ) |
8 |
|
eqid |
|- ( LBasis ` M ) = ( LBasis ` M ) |
9 |
|
eqid |
|- ( LSpan ` M ) = ( LSpan ` M ) |
10 |
1 8 9
|
lbssp |
|- ( V e. ( LBasis ` M ) -> ( ( LSpan ` M ) ` V ) = B ) |
11 |
7 10
|
syl |
|- ( ph -> ( ( LSpan ` M ) ` V ) = B ) |
12 |
11
|
eleq2d |
|- ( ph -> ( X e. ( ( LSpan ` M ) ` V ) <-> X e. B ) ) |
13 |
1 8
|
lbsss |
|- ( V e. ( LBasis ` M ) -> V C_ B ) |
14 |
7 13
|
syl |
|- ( ph -> V C_ B ) |
15 |
9 1 2 3 4 5 6 14
|
ellspds |
|- ( ph -> ( X e. ( ( LSpan ` M ) ` V ) <-> E. a e. ( K ^m V ) ( a finSupp .0. /\ X = ( M gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) ) ) ) |
16 |
12 15
|
bitr3d |
|- ( ph -> ( X e. B <-> E. a e. ( K ^m V ) ( a finSupp .0. /\ X = ( M gsum ( v e. V |-> ( ( a ` v ) .x. v ) ) ) ) ) ) |