Step |
Hyp |
Ref |
Expression |
1 |
|
lbslsp.v |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lbslsp.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
lbslsp.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
4 |
|
lbslsp.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
lbslsp.t |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
6 |
|
lbslsp.m |
⊢ ( 𝜑 → 𝑀 ∈ LMod ) |
7 |
|
lbslsp.1 |
⊢ ( 𝜑 → 𝑉 ∈ ( LBasis ‘ 𝑀 ) ) |
8 |
|
eqid |
⊢ ( LBasis ‘ 𝑀 ) = ( LBasis ‘ 𝑀 ) |
9 |
|
eqid |
⊢ ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 ) |
10 |
1 8 9
|
lbssp |
⊢ ( 𝑉 ∈ ( LBasis ‘ 𝑀 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = 𝐵 ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = 𝐵 ) |
12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ↔ 𝑋 ∈ 𝐵 ) ) |
13 |
1 8
|
lbsss |
⊢ ( 𝑉 ∈ ( LBasis ‘ 𝑀 ) → 𝑉 ⊆ 𝐵 ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ 𝐵 ) |
15 |
9 1 2 3 4 5 6 14
|
ellspds |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ↔ ∃ 𝑎 ∈ ( 𝐾 ↑m 𝑉 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝑣 ) ) ) ) ) ) |
16 |
12 15
|
bitr3d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ∃ 𝑎 ∈ ( 𝐾 ↑m 𝑉 ) ( 𝑎 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝑣 ) ) ) ) ) ) |