Metamath Proof Explorer


Theorem lbslsp

Description: Any element of a left module M can be expressed as a linear combination of the elements of a basis V of M . (Contributed by Thierry Arnoux, 3-Aug-2023)

Ref Expression
Hypotheses lbslsp.v 𝐵 = ( Base ‘ 𝑀 )
lbslsp.k 𝐾 = ( Base ‘ 𝑆 )
lbslsp.s 𝑆 = ( Scalar ‘ 𝑀 )
lbslsp.z 0 = ( 0g𝑆 )
lbslsp.t · = ( ·𝑠𝑀 )
lbslsp.m ( 𝜑𝑀 ∈ LMod )
lbslsp.1 ( 𝜑𝑉 ∈ ( LBasis ‘ 𝑀 ) )
Assertion lbslsp ( 𝜑 → ( 𝑋𝐵 ↔ ∃ 𝑎 ∈ ( 𝐾m 𝑉 ) ( 𝑎 finSupp 0𝑋 = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝑎𝑣 ) · 𝑣 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lbslsp.v 𝐵 = ( Base ‘ 𝑀 )
2 lbslsp.k 𝐾 = ( Base ‘ 𝑆 )
3 lbslsp.s 𝑆 = ( Scalar ‘ 𝑀 )
4 lbslsp.z 0 = ( 0g𝑆 )
5 lbslsp.t · = ( ·𝑠𝑀 )
6 lbslsp.m ( 𝜑𝑀 ∈ LMod )
7 lbslsp.1 ( 𝜑𝑉 ∈ ( LBasis ‘ 𝑀 ) )
8 eqid ( LBasis ‘ 𝑀 ) = ( LBasis ‘ 𝑀 )
9 eqid ( LSpan ‘ 𝑀 ) = ( LSpan ‘ 𝑀 )
10 1 8 9 lbssp ( 𝑉 ∈ ( LBasis ‘ 𝑀 ) → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = 𝐵 )
11 7 10 syl ( 𝜑 → ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) = 𝐵 )
12 11 eleq2d ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ↔ 𝑋𝐵 ) )
13 1 8 lbsss ( 𝑉 ∈ ( LBasis ‘ 𝑀 ) → 𝑉𝐵 )
14 7 13 syl ( 𝜑𝑉𝐵 )
15 9 1 2 3 4 5 6 14 ellspds ( 𝜑 → ( 𝑋 ∈ ( ( LSpan ‘ 𝑀 ) ‘ 𝑉 ) ↔ ∃ 𝑎 ∈ ( 𝐾m 𝑉 ) ( 𝑎 finSupp 0𝑋 = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝑎𝑣 ) · 𝑣 ) ) ) ) ) )
16 12 15 bitr3d ( 𝜑 → ( 𝑋𝐵 ↔ ∃ 𝑎 ∈ ( 𝐾m 𝑉 ) ( 𝑎 finSupp 0𝑋 = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝑎𝑣 ) · 𝑣 ) ) ) ) ) )