Metamath Proof Explorer


Theorem drgextgsum

Description: Group sum in a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b
|- B = ( ( subringAlg ` E ) ` U )
drgext.1
|- ( ph -> E e. DivRing )
drgext.2
|- ( ph -> U e. ( SubRing ` E ) )
drgext.f
|- F = ( E |`s U )
drgext.3
|- ( ph -> F e. DivRing )
drgextgsum.1
|- ( ph -> X e. V )
Assertion drgextgsum
|- ( ph -> ( E gsum ( i e. X |-> Y ) ) = ( B gsum ( i e. X |-> Y ) ) )

Proof

Step Hyp Ref Expression
1 drgext.b
 |-  B = ( ( subringAlg ` E ) ` U )
2 drgext.1
 |-  ( ph -> E e. DivRing )
3 drgext.2
 |-  ( ph -> U e. ( SubRing ` E ) )
4 drgext.f
 |-  F = ( E |`s U )
5 drgext.3
 |-  ( ph -> F e. DivRing )
6 drgextgsum.1
 |-  ( ph -> X e. V )
7 6 mptexd
 |-  ( ph -> ( i e. X |-> Y ) e. _V )
8 1 4 sralvec
 |-  ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> B e. LVec )
9 2 5 3 8 syl3anc
 |-  ( ph -> B e. LVec )
10 eqid
 |-  ( Base ` E ) = ( Base ` E )
11 10 subrgss
 |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) )
12 3 11 syl
 |-  ( ph -> U C_ ( Base ` E ) )
13 1 7 2 9 12 gsumsra
 |-  ( ph -> ( E gsum ( i e. X |-> Y ) ) = ( B gsum ( i e. X |-> Y ) ) )