Step |
Hyp |
Ref |
Expression |
1 |
|
drgext.b |
|- B = ( ( subringAlg ` E ) ` U ) |
2 |
|
drgext.1 |
|- ( ph -> E e. DivRing ) |
3 |
|
drgext.2 |
|- ( ph -> U e. ( SubRing ` E ) ) |
4 |
|
drgext.f |
|- F = ( E |`s U ) |
5 |
|
drgext.3 |
|- ( ph -> F e. DivRing ) |
6 |
|
drgextgsum.1 |
|- ( ph -> X e. V ) |
7 |
6
|
mptexd |
|- ( ph -> ( i e. X |-> Y ) e. _V ) |
8 |
1 4
|
sralvec |
|- ( ( E e. DivRing /\ F e. DivRing /\ U e. ( SubRing ` E ) ) -> B e. LVec ) |
9 |
2 5 3 8
|
syl3anc |
|- ( ph -> B e. LVec ) |
10 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
11 |
10
|
subrgss |
|- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
12 |
3 11
|
syl |
|- ( ph -> U C_ ( Base ` E ) ) |
13 |
1 7 2 9 12
|
gsumsra |
|- ( ph -> ( E gsum ( i e. X |-> Y ) ) = ( B gsum ( i e. X |-> Y ) ) ) |