| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drgext.b |
⊢ 𝐵 = ( ( subringAlg ‘ 𝐸 ) ‘ 𝑈 ) |
| 2 |
|
drgext.1 |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 3 |
|
drgext.2 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) |
| 4 |
|
drgext.f |
⊢ 𝐹 = ( 𝐸 ↾s 𝑈 ) |
| 5 |
|
drgext.3 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 6 |
|
drgextgsum.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
6
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑋 ↦ 𝑌 ) ∈ V ) |
| 8 |
1 4
|
sralvec |
⊢ ( ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐵 ∈ LVec ) |
| 9 |
2 5 3 8
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ LVec ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 11 |
10
|
subrgss |
⊢ ( 𝑈 ∈ ( SubRing ‘ 𝐸 ) → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐸 ) ) |
| 13 |
1 7 2 9 12
|
gsumsra |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑖 ∈ 𝑋 ↦ 𝑌 ) ) = ( 𝐵 Σg ( 𝑖 ∈ 𝑋 ↦ 𝑌 ) ) ) |