Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsra.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) | |
| gsumsra.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) | ||
| gsumsra.3 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
| gsumsra.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| gsumsra.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) | ||
| Assertion | gsumsra | ⊢ ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsra.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) | |
| 2 | gsumsra.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) | |
| 3 | gsumsra.3 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
| 4 | gsumsra.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 5 | gsumsra.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) | |
| 6 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
| 7 | 6 5 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
| 8 | 6 5 | sraaddg | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
| 9 | 2 3 4 7 8 | gsumpropd | ⊢ ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) ) |