Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsra.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) | |
gsumsra.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) | ||
gsumsra.3 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | ||
gsumsra.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
gsumsra.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) | ||
Assertion | gsumsra | ⊢ ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsra.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) | |
2 | gsumsra.2 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑈 ) | |
3 | gsumsra.3 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) | |
4 | gsumsra.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
5 | gsumsra.5 | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) | |
6 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) ) |
7 | 6 5 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
8 | 6 5 | sraaddg | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
9 | 2 3 4 7 8 | gsumpropd | ⊢ ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) ) |