Metamath Proof Explorer


Theorem gsumsra

Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsra.1 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 )
gsumsra.2 ( 𝜑𝐹𝑈 )
gsumsra.3 ( 𝜑𝑅𝑉 )
gsumsra.4 ( 𝜑𝐴𝑊 )
gsumsra.5 ( 𝜑𝐵 ⊆ ( Base ‘ 𝑅 ) )
Assertion gsumsra ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 gsumsra.1 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 )
2 gsumsra.2 ( 𝜑𝐹𝑈 )
3 gsumsra.3 ( 𝜑𝑅𝑉 )
4 gsumsra.4 ( 𝜑𝐴𝑊 )
5 gsumsra.5 ( 𝜑𝐵 ⊆ ( Base ‘ 𝑅 ) )
6 1 a1i ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐵 ) )
7 6 5 srabase ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) )
8 6 5 sraaddg ( 𝜑 → ( +g𝑅 ) = ( +g𝐴 ) )
9 2 3 4 7 8 gsumpropd ( 𝜑 → ( 𝑅 Σg 𝐹 ) = ( 𝐴 Σg 𝐹 ) )