Metamath Proof Explorer


Theorem gsummpt2co

Description: Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Hypotheses gsummpt2co.b 𝐵 = ( Base ‘ 𝑊 )
gsummpt2co.z 0 = ( 0g𝑊 )
gsummpt2co.w ( 𝜑𝑊 ∈ CMnd )
gsummpt2co.a ( 𝜑𝐴 ∈ Fin )
gsummpt2co.e ( 𝜑𝐸𝑉 )
gsummpt2co.1 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
gsummpt2co.2 ( ( 𝜑𝑥𝐴 ) → 𝐷𝐸 )
gsummpt2co.3 𝐹 = ( 𝑥𝐴𝐷 )
Assertion gsummpt2co ( 𝜑 → ( 𝑊 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝑊 Σg ( 𝑦𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummpt2co.b 𝐵 = ( Base ‘ 𝑊 )
2 gsummpt2co.z 0 = ( 0g𝑊 )
3 gsummpt2co.w ( 𝜑𝑊 ∈ CMnd )
4 gsummpt2co.a ( 𝜑𝐴 ∈ Fin )
5 gsummpt2co.e ( 𝜑𝐸𝑉 )
6 gsummpt2co.1 ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
7 gsummpt2co.2 ( ( 𝜑𝑥𝐴 ) → 𝐷𝐸 )
8 gsummpt2co.3 𝐹 = ( 𝑥𝐴𝐷 )
9 nfcsb1v 𝑥 ( 2nd𝑝 ) / 𝑥 𝐶
10 csbeq1a ( 𝑥 = ( 2nd𝑝 ) → 𝐶 = ( 2nd𝑝 ) / 𝑥 𝐶 )
11 ssidd ( 𝜑𝐵𝐵 )
12 elcnv ( 𝑝 𝐹 ↔ ∃ 𝑧𝑥 ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ ∧ 𝑥 𝐹 𝑧 ) )
13 vex 𝑧 ∈ V
14 vex 𝑥 ∈ V
15 13 14 op2ndd ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ → ( 2nd𝑝 ) = 𝑥 )
16 15 adantr ( ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ ∧ 𝑥 𝐹 𝑧 ) → ( 2nd𝑝 ) = 𝑥 )
17 8 dmmptss dom 𝐹𝐴
18 14 13 breldm ( 𝑥 𝐹 𝑧𝑥 ∈ dom 𝐹 )
19 17 18 sseldi ( 𝑥 𝐹 𝑧𝑥𝐴 )
20 19 adantl ( ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ ∧ 𝑥 𝐹 𝑧 ) → 𝑥𝐴 )
21 16 20 eqeltrd ( ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ ∧ 𝑥 𝐹 𝑧 ) → ( 2nd𝑝 ) ∈ 𝐴 )
22 21 exlimivv ( ∃ 𝑧𝑥 ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ ∧ 𝑥 𝐹 𝑧 ) → ( 2nd𝑝 ) ∈ 𝐴 )
23 12 22 sylbi ( 𝑝 𝐹 → ( 2nd𝑝 ) ∈ 𝐴 )
24 23 adantl ( ( 𝜑𝑝 𝐹 ) → ( 2nd𝑝 ) ∈ 𝐴 )
25 8 funmpt2 Fun 𝐹
26 funcnvcnv ( Fun 𝐹 → Fun 𝐹 )
27 25 26 ax-mp Fun 𝐹
28 27 a1i ( ( 𝜑𝑥𝐴 ) → Fun 𝐹 )
29 dfdm4 dom 𝐹 = ran 𝐹
30 8 dmeqi dom 𝐹 = dom ( 𝑥𝐴𝐷 )
31 7 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐷𝐸 )
32 dmmptg ( ∀ 𝑥𝐴 𝐷𝐸 → dom ( 𝑥𝐴𝐷 ) = 𝐴 )
33 31 32 syl ( 𝜑 → dom ( 𝑥𝐴𝐷 ) = 𝐴 )
34 30 33 syl5eq ( 𝜑 → dom 𝐹 = 𝐴 )
35 29 34 eqtr3id ( 𝜑 → ran 𝐹 = 𝐴 )
36 35 eleq2d ( 𝜑 → ( 𝑥 ∈ ran 𝐹𝑥𝐴 ) )
37 36 biimpar ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ran 𝐹 )
38 relcnv Rel 𝐹
39 fcnvgreu ( ( ( Rel 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ ran 𝐹 ) → ∃! 𝑝 𝐹 𝑥 = ( 2nd𝑝 ) )
40 38 39 mpanl1 ( ( Fun 𝐹𝑥 ∈ ran 𝐹 ) → ∃! 𝑝 𝐹 𝑥 = ( 2nd𝑝 ) )
41 28 37 40 syl2anc ( ( 𝜑𝑥𝐴 ) → ∃! 𝑝 𝐹 𝑥 = ( 2nd𝑝 ) )
42 9 1 2 10 3 4 11 6 24 41 gsummptf1o ( 𝜑 → ( 𝑊 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝑊 Σg ( 𝑝 𝐹 ( 2nd𝑝 ) / 𝑥 𝐶 ) ) )
43 8 rnmptss ( ∀ 𝑥𝐴 𝐷𝐸 → ran 𝐹𝐸 )
44 31 43 syl ( 𝜑 → ran 𝐹𝐸 )
45 dfcnv2 ( ran 𝐹𝐸 𝐹 = 𝑧𝐸 ( { 𝑧 } × ( 𝐹 “ { 𝑧 } ) ) )
46 44 45 syl ( 𝜑 𝐹 = 𝑧𝐸 ( { 𝑧 } × ( 𝐹 “ { 𝑧 } ) ) )
47 46 mpteq1d ( 𝜑 → ( 𝑝 𝐹 ( 2nd𝑝 ) / 𝑥 𝐶 ) = ( 𝑝 𝑧𝐸 ( { 𝑧 } × ( 𝐹 “ { 𝑧 } ) ) ↦ ( 2nd𝑝 ) / 𝑥 𝐶 ) )
48 nfcv 𝑧 ( 2nd𝑝 ) / 𝑥 𝐶
49 csbeq1 ( ( 2nd𝑝 ) = 𝑥 ( 2nd𝑝 ) / 𝑥 𝐶 = 𝑥 / 𝑥 𝐶 )
50 15 49 syl ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ → ( 2nd𝑝 ) / 𝑥 𝐶 = 𝑥 / 𝑥 𝐶 )
51 csbid 𝑥 / 𝑥 𝐶 = 𝐶
52 50 51 eqtrdi ( 𝑝 = ⟨ 𝑧 , 𝑥 ⟩ → ( 2nd𝑝 ) / 𝑥 𝐶 = 𝐶 )
53 48 9 52 mpomptxf ( 𝑝 𝑧𝐸 ( { 𝑧 } × ( 𝐹 “ { 𝑧 } ) ) ↦ ( 2nd𝑝 ) / 𝑥 𝐶 ) = ( 𝑧𝐸 , 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 )
54 47 53 eqtrdi ( 𝜑 → ( 𝑝 𝐹 ( 2nd𝑝 ) / 𝑥 𝐶 ) = ( 𝑧𝐸 , 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) )
55 54 oveq2d ( 𝜑 → ( 𝑊 Σg ( 𝑝 𝐹 ( 2nd𝑝 ) / 𝑥 𝐶 ) ) = ( 𝑊 Σg ( 𝑧𝐸 , 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) )
56 mptfi ( 𝐴 ∈ Fin → ( 𝑥𝐴𝐷 ) ∈ Fin )
57 8 56 eqeltrid ( 𝐴 ∈ Fin → 𝐹 ∈ Fin )
58 cnvfi ( 𝐹 ∈ Fin → 𝐹 ∈ Fin )
59 4 57 58 3syl ( 𝜑 𝐹 ∈ Fin )
60 imaexg ( 𝐹 ∈ Fin → ( 𝐹 “ { 𝑧 } ) ∈ V )
61 59 60 syl ( 𝜑 → ( 𝐹 “ { 𝑧 } ) ∈ V )
62 61 adantr ( ( 𝜑𝑧𝐸 ) → ( 𝐹 “ { 𝑧 } ) ∈ V )
63 simpll ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → 𝜑 )
64 imassrn ( 𝐹 “ { 𝑧 } ) ⊆ ran 𝐹
65 64 29 sseqtrri ( 𝐹 “ { 𝑧 } ) ⊆ dom 𝐹
66 65 17 sstri ( 𝐹 “ { 𝑧 } ) ⊆ 𝐴
67 13 14 elimasn ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↔ ⟨ 𝑧 , 𝑥 ⟩ ∈ 𝐹 )
68 67 biimpi ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) → ⟨ 𝑧 , 𝑥 ⟩ ∈ 𝐹 )
69 68 adantl ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → ⟨ 𝑧 , 𝑥 ⟩ ∈ 𝐹 )
70 69 67 sylibr ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) )
71 66 70 sseldi ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → 𝑥𝐴 )
72 63 71 6 syl2anc ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → 𝐶𝐵 )
73 72 anasss ( ( 𝜑 ∧ ( 𝑧𝐸𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) ) → 𝐶𝐵 )
74 df-br ( 𝑧 𝐹 𝑥 ↔ ⟨ 𝑧 , 𝑥 ⟩ ∈ 𝐹 )
75 69 74 sylibr ( ( ( 𝜑𝑧𝐸 ) ∧ 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) → 𝑧 𝐹 𝑥 )
76 75 anasss ( ( 𝜑 ∧ ( 𝑧𝐸𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) ) → 𝑧 𝐹 𝑥 )
77 76 pm2.24d ( ( 𝜑 ∧ ( 𝑧𝐸𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) ) → ( ¬ 𝑧 𝐹 𝑥𝐶 = 0 ) )
78 77 imp ( ( ( 𝜑 ∧ ( 𝑧𝐸𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) ) ∧ ¬ 𝑧 𝐹 𝑥 ) → 𝐶 = 0 )
79 78 anasss ( ( 𝜑 ∧ ( ( 𝑧𝐸𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ) ∧ ¬ 𝑧 𝐹 𝑥 ) ) → 𝐶 = 0 )
80 1 2 3 5 62 73 59 79 gsum2d2 ( 𝜑 → ( 𝑊 Σg ( 𝑧𝐸 , 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑧𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) ) )
81 42 55 80 3eqtrd ( 𝜑 → ( 𝑊 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝑊 Σg ( 𝑧𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) ) )
82 nfcv 𝑧 ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) )
83 nfcv 𝑦 ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) )
84 sneq ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } )
85 84 imaeq2d ( 𝑦 = 𝑧 → ( 𝐹 “ { 𝑦 } ) = ( 𝐹 “ { 𝑧 } ) )
86 85 mpteq1d ( 𝑦 = 𝑧 → ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) = ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) )
87 86 oveq2d ( 𝑦 = 𝑧 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) )
88 82 83 87 cbvmpt ( 𝑦𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) = ( 𝑧𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) )
89 88 oveq2i ( 𝑊 Σg ( 𝑦𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) = ( 𝑊 Σg ( 𝑧𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) )
90 81 89 eqtr4di ( 𝜑 → ( 𝑊 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝑊 Σg ( 𝑦𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) )