Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt2co.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
gsummpt2co.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
gsummpt2co.w |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
4 |
|
gsummpt2co.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
gsummpt2co.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
6 |
|
gsummpt2co.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
7 |
|
gsummpt2co.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐸 ) |
8 |
|
gsummpt2co.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 |
10 |
|
csbeq1a |
⊢ ( 𝑥 = ( 2nd ‘ 𝑝 ) → 𝐶 = ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) |
11 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
12 |
|
elcnv |
⊢ ( 𝑝 ∈ ◡ 𝐹 ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑝 = 〈 𝑧 , 𝑥 〉 ∧ 𝑥 𝐹 𝑧 ) ) |
13 |
|
vex |
⊢ 𝑧 ∈ V |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
13 14
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑧 , 𝑥 〉 → ( 2nd ‘ 𝑝 ) = 𝑥 ) |
16 |
15
|
adantr |
⊢ ( ( 𝑝 = 〈 𝑧 , 𝑥 〉 ∧ 𝑥 𝐹 𝑧 ) → ( 2nd ‘ 𝑝 ) = 𝑥 ) |
17 |
8
|
dmmptss |
⊢ dom 𝐹 ⊆ 𝐴 |
18 |
14 13
|
breldm |
⊢ ( 𝑥 𝐹 𝑧 → 𝑥 ∈ dom 𝐹 ) |
19 |
17 18
|
sselid |
⊢ ( 𝑥 𝐹 𝑧 → 𝑥 ∈ 𝐴 ) |
20 |
19
|
adantl |
⊢ ( ( 𝑝 = 〈 𝑧 , 𝑥 〉 ∧ 𝑥 𝐹 𝑧 ) → 𝑥 ∈ 𝐴 ) |
21 |
16 20
|
eqeltrd |
⊢ ( ( 𝑝 = 〈 𝑧 , 𝑥 〉 ∧ 𝑥 𝐹 𝑧 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐴 ) |
22 |
21
|
exlimivv |
⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑝 = 〈 𝑧 , 𝑥 〉 ∧ 𝑥 𝐹 𝑧 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐴 ) |
23 |
12 22
|
sylbi |
⊢ ( 𝑝 ∈ ◡ 𝐹 → ( 2nd ‘ 𝑝 ) ∈ 𝐴 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ◡ 𝐹 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐴 ) |
25 |
8
|
funmpt2 |
⊢ Fun 𝐹 |
26 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
27 |
25 26
|
ax-mp |
⊢ Fun ◡ ◡ 𝐹 |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Fun ◡ ◡ 𝐹 ) |
29 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
30 |
8
|
dmeqi |
⊢ dom 𝐹 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) |
31 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐷 ∈ 𝐸 ) |
32 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐷 ∈ 𝐸 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) = 𝐴 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) = 𝐴 ) |
34 |
30 33
|
syl5eq |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
35 |
29 34
|
eqtr3id |
⊢ ( 𝜑 → ran ◡ 𝐹 = 𝐴 ) |
36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ◡ 𝐹 ↔ 𝑥 ∈ 𝐴 ) ) |
37 |
36
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ran ◡ 𝐹 ) |
38 |
|
relcnv |
⊢ Rel ◡ 𝐹 |
39 |
|
fcnvgreu |
⊢ ( ( ( Rel ◡ 𝐹 ∧ Fun ◡ ◡ 𝐹 ) ∧ 𝑥 ∈ ran ◡ 𝐹 ) → ∃! 𝑝 ∈ ◡ 𝐹 𝑥 = ( 2nd ‘ 𝑝 ) ) |
40 |
38 39
|
mpanl1 |
⊢ ( ( Fun ◡ ◡ 𝐹 ∧ 𝑥 ∈ ran ◡ 𝐹 ) → ∃! 𝑝 ∈ ◡ 𝐹 𝑥 = ( 2nd ‘ 𝑝 ) ) |
41 |
28 37 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑝 ∈ ◡ 𝐹 𝑥 = ( 2nd ‘ 𝑝 ) ) |
42 |
9 1 2 10 3 4 11 6 24 41
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑝 ∈ ◡ 𝐹 ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) ) ) |
43 |
8
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐷 ∈ 𝐸 → ran 𝐹 ⊆ 𝐸 ) |
44 |
31 43
|
syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐸 ) |
45 |
|
dfcnv2 |
⊢ ( ran 𝐹 ⊆ 𝐸 → ◡ 𝐹 = ∪ 𝑧 ∈ 𝐸 ( { 𝑧 } × ( ◡ 𝐹 “ { 𝑧 } ) ) ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 = ∪ 𝑧 ∈ 𝐸 ( { 𝑧 } × ( ◡ 𝐹 “ { 𝑧 } ) ) ) |
47 |
46
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑝 ∈ ◡ 𝐹 ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) = ( 𝑝 ∈ ∪ 𝑧 ∈ 𝐸 ( { 𝑧 } × ( ◡ 𝐹 “ { 𝑧 } ) ) ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑧 ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 |
49 |
|
csbeq1 |
⊢ ( ( 2nd ‘ 𝑝 ) = 𝑥 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑥 / 𝑥 ⦌ 𝐶 ) |
50 |
15 49
|
syl |
⊢ ( 𝑝 = 〈 𝑧 , 𝑥 〉 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑥 / 𝑥 ⦌ 𝐶 ) |
51 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐶 = 𝐶 |
52 |
50 51
|
eqtrdi |
⊢ ( 𝑝 = 〈 𝑧 , 𝑥 〉 → ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 = 𝐶 ) |
53 |
48 9 52
|
mpomptxf |
⊢ ( 𝑝 ∈ ∪ 𝑧 ∈ 𝐸 ( { 𝑧 } × ( ◡ 𝐹 “ { 𝑧 } ) ) ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) = ( 𝑧 ∈ 𝐸 , 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) |
54 |
47 53
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑝 ∈ ◡ 𝐹 ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) = ( 𝑧 ∈ 𝐸 , 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑝 ∈ ◡ 𝐹 ↦ ⦋ ( 2nd ‘ 𝑝 ) / 𝑥 ⦌ 𝐶 ) ) = ( 𝑊 Σg ( 𝑧 ∈ 𝐸 , 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) |
56 |
|
mptfi |
⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ∈ Fin ) |
57 |
8 56
|
eqeltrid |
⊢ ( 𝐴 ∈ Fin → 𝐹 ∈ Fin ) |
58 |
|
cnvfi |
⊢ ( 𝐹 ∈ Fin → ◡ 𝐹 ∈ Fin ) |
59 |
4 57 58
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 ∈ Fin ) |
60 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ Fin → ( ◡ 𝐹 “ { 𝑧 } ) ∈ V ) |
61 |
59 60
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 𝑧 } ) ∈ V ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) → ( ◡ 𝐹 “ { 𝑧 } ) ∈ V ) |
63 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 𝜑 ) |
64 |
|
imassrn |
⊢ ( ◡ 𝐹 “ { 𝑧 } ) ⊆ ran ◡ 𝐹 |
65 |
64 29
|
sseqtrri |
⊢ ( ◡ 𝐹 “ { 𝑧 } ) ⊆ dom 𝐹 |
66 |
65 17
|
sstri |
⊢ ( ◡ 𝐹 “ { 𝑧 } ) ⊆ 𝐴 |
67 |
13 14
|
elimasn |
⊢ ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↔ 〈 𝑧 , 𝑥 〉 ∈ ◡ 𝐹 ) |
68 |
67
|
biimpi |
⊢ ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) → 〈 𝑧 , 𝑥 〉 ∈ ◡ 𝐹 ) |
69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 〈 𝑧 , 𝑥 〉 ∈ ◡ 𝐹 ) |
70 |
69 67
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) |
71 |
66 70
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 𝑥 ∈ 𝐴 ) |
72 |
63 71 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 𝐶 ∈ 𝐵 ) |
73 |
72
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐸 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) ) → 𝐶 ∈ 𝐵 ) |
74 |
|
df-br |
⊢ ( 𝑧 ◡ 𝐹 𝑥 ↔ 〈 𝑧 , 𝑥 〉 ∈ ◡ 𝐹 ) |
75 |
69 74
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐸 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) → 𝑧 ◡ 𝐹 𝑥 ) |
76 |
75
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐸 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) ) → 𝑧 ◡ 𝐹 𝑥 ) |
77 |
76
|
pm2.24d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐸 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) ) → ( ¬ 𝑧 ◡ 𝐹 𝑥 → 𝐶 = 0 ) ) |
78 |
77
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐸 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) ) ∧ ¬ 𝑧 ◡ 𝐹 𝑥 ) → 𝐶 = 0 ) |
79 |
78
|
anasss |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝐸 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ) ∧ ¬ 𝑧 ◡ 𝐹 𝑥 ) ) → 𝐶 = 0 ) |
80 |
1 2 3 5 62 73 59 79
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑧 ∈ 𝐸 , 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑧 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) ) ) |
81 |
42 55 80
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑧 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) ) ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) |
83 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) |
84 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
85 |
84
|
imaeq2d |
⊢ ( 𝑦 = 𝑧 → ( ◡ 𝐹 “ { 𝑦 } ) = ( ◡ 𝐹 “ { 𝑧 } ) ) |
86 |
85
|
mpteq1d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) = ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) |
87 |
86
|
oveq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) |
88 |
82 83 87
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) = ( 𝑧 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) |
89 |
88
|
oveq2i |
⊢ ( 𝑊 Σg ( 𝑦 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) = ( 𝑊 Σg ( 𝑧 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑧 } ) ↦ 𝐶 ) ) ) ) |
90 |
81 89
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑦 ∈ 𝐸 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) ) |