| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummpt2d.c |
⊢ Ⅎ 𝑧 𝐶 |
| 2 |
|
gsummpt2d.0 |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
gsummpt2d.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 4 |
|
gsummpt2d.1 |
⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → 𝐶 = 𝐷 ) |
| 5 |
|
gsummpt2d.r |
⊢ ( 𝜑 → Rel 𝐴 ) |
| 6 |
|
gsummpt2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
gsummpt2d.m |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
| 8 |
|
gsummpt2d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 10 |
6
|
dmexd |
⊢ ( 𝜑 → dom 𝐴 ∈ V ) |
| 11 |
|
1stdm |
⊢ ( ( Rel 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) |
| 12 |
5 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1st ‘ 𝑥 ) ∈ dom 𝐴 ) |
| 13 |
|
fo1st |
⊢ 1st : V –onto→ V |
| 14 |
|
fofn |
⊢ ( 1st : V –onto→ V → 1st Fn V ) |
| 15 |
|
dffn5 |
⊢ ( 1st Fn V ↔ 1st = ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) ) |
| 16 |
15
|
biimpi |
⊢ ( 1st Fn V → 1st = ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) ) |
| 17 |
13 14 16
|
mp2b |
⊢ 1st = ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) |
| 18 |
17
|
reseq1i |
⊢ ( 1st ↾ 𝐴 ) = ( ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) ↾ 𝐴 ) |
| 19 |
|
ssv |
⊢ 𝐴 ⊆ V |
| 20 |
|
resmpt |
⊢ ( 𝐴 ⊆ V → ( ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 1st ‘ 𝑥 ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ( 1st ‘ 𝑥 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 1st ‘ 𝑥 ) ) |
| 22 |
18 21
|
eqtri |
⊢ ( 1st ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 1st ‘ 𝑥 ) ) |
| 23 |
3 9 7 6 10 8 12 22
|
gsummpt2co |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → 𝑊 ∈ CMnd ) |
| 25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → 𝐴 ∈ Fin ) |
| 26 |
|
imaexg |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 “ { 𝑦 } ) ∈ V ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝐴 “ { 𝑦 } ) ∈ V ) |
| 28 |
4
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝐶 = 𝐷 ) |
| 29 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝜑 ) |
| 30 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝑥 ∈ 𝐴 ) |
| 31 |
29 30 8
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝐶 ∈ 𝐵 ) |
| 32 |
28 31
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝐷 ∈ 𝐵 ) |
| 33 |
|
vex |
⊢ 𝑦 ∈ V |
| 34 |
|
vex |
⊢ 𝑧 ∈ V |
| 35 |
33 34
|
elimasn |
⊢ ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↔ 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) |
| 36 |
35
|
biimpi |
⊢ ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) → 〈 𝑦 , 𝑧 〉 ∈ 𝐴 ) |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 39 |
38
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) ∧ 𝑥 = 〈 𝑦 , 𝑧 〉 ) → ( 𝑥 = 〈 𝑦 , 𝑧 〉 ↔ 〈 𝑦 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) ) |
| 40 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) |
| 41 |
37 39 40
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 42 |
32 41
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ) → 𝐷 ∈ 𝐵 ) |
| 43 |
42
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) : ( 𝐴 “ { 𝑦 } ) ⟶ 𝐵 ) |
| 44 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) = ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) |
| 45 |
|
imafi2 |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 “ { 𝑦 } ) ∈ Fin ) |
| 46 |
6 45
|
syl |
⊢ ( 𝜑 → ( 𝐴 “ { 𝑦 } ) ∈ Fin ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝐴 “ { 𝑦 } ) ∈ Fin ) |
| 48 |
|
fvex |
⊢ ( 0g ‘ 𝑊 ) ∈ V |
| 49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 0g ‘ 𝑊 ) ∈ V ) |
| 50 |
44 47 42 49
|
fsuppmptdm |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) finSupp ( 0g ‘ 𝑊 ) ) |
| 51 |
|
2ndconst |
⊢ ( 𝑦 ∈ dom 𝐴 → ( 2nd ↾ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) : ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑦 } ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 2nd ↾ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) : ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑦 } ) ) |
| 53 |
|
1stpreimas |
⊢ ( ( Rel 𝐴 ∧ 𝑦 ∈ dom 𝐴 ) → ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) = ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) |
| 54 |
5 53
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) = ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) |
| 55 |
54
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( 2nd ↾ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) ) |
| 56 |
55
|
f1oeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) : ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑦 } ) ↔ ( 2nd ↾ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) : ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑦 } ) ) ) |
| 57 |
52 56
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) : ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑦 } ) ) |
| 58 |
3 9 24 27 43 50 57
|
gsumf1o |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑊 Σg ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) = ( 𝑊 Σg ( ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ∘ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ) ) ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) |
| 60 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) = ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) |
| 61 |
59 60
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → 𝑥 ∈ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) |
| 62 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑦 } ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑦 } ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ∀ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑦 } ) ) |
| 65 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 66 |
|
fofn |
⊢ ( 2nd : V –onto→ V → 2nd Fn V ) |
| 67 |
|
dffn5 |
⊢ ( 2nd Fn V ↔ 2nd = ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 68 |
67
|
biimpi |
⊢ ( 2nd Fn V → 2nd = ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 69 |
65 66 68
|
mp2b |
⊢ 2nd = ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) |
| 70 |
69
|
reseq1i |
⊢ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) |
| 71 |
|
ssv |
⊢ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ⊆ V |
| 72 |
|
resmpt |
⊢ ( ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ⊆ V → ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 73 |
71 72
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ( 2nd ‘ 𝑥 ) ) |
| 74 |
70 73
|
eqtri |
⊢ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ( 2nd ‘ 𝑥 ) ) |
| 75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 76 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) = ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) |
| 77 |
64 75 76
|
fmptcos |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ∘ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ⦋ ( 2nd ‘ 𝑥 ) / 𝑧 ⦌ 𝐷 ) ) |
| 78 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) |
| 79 |
1
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → Ⅎ 𝑧 𝐶 ) |
| 80 |
61
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → 𝑥 ∈ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ) |
| 81 |
|
xp1st |
⊢ ( 𝑥 ∈ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) → ( 1st ‘ 𝑥 ) ∈ { 𝑦 } ) |
| 82 |
80 81
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → ( 1st ‘ 𝑥 ) ∈ { 𝑦 } ) |
| 83 |
|
fvex |
⊢ ( 1st ‘ 𝑥 ) ∈ V |
| 84 |
83
|
elsn |
⊢ ( ( 1st ‘ 𝑥 ) ∈ { 𝑦 } ↔ ( 1st ‘ 𝑥 ) = 𝑦 ) |
| 85 |
82 84
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → ( 1st ‘ 𝑥 ) = 𝑦 ) |
| 86 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → 𝑧 = ( 2nd ‘ 𝑥 ) ) |
| 87 |
86
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → ( 2nd ‘ 𝑥 ) = 𝑧 ) |
| 88 |
|
eqopi |
⊢ ( ( 𝑥 ∈ ( { 𝑦 } × ( 𝐴 “ { 𝑦 } ) ) ∧ ( ( 1st ‘ 𝑥 ) = 𝑦 ∧ ( 2nd ‘ 𝑥 ) = 𝑧 ) ) → 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 89 |
80 85 87 88
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → 𝑥 = 〈 𝑦 , 𝑧 〉 ) |
| 90 |
89 4
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → 𝐶 = 𝐷 ) |
| 91 |
90
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ∧ 𝑧 = ( 2nd ‘ 𝑥 ) ) → 𝐷 = 𝐶 ) |
| 92 |
78 79 63 91
|
csbiedf |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) ∧ 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) → ⦋ ( 2nd ‘ 𝑥 ) / 𝑧 ⦌ 𝐷 = 𝐶 ) |
| 93 |
92
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ ⦋ ( 2nd ‘ 𝑥 ) / 𝑧 ⦌ 𝐷 ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) |
| 94 |
77 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ∘ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ) = ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑊 Σg ( ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ∘ ( 2nd ↾ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ) ) ) = ( 𝑊 Σg ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) ) |
| 96 |
58 95
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐴 ) → ( 𝑊 Σg ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) ) |
| 97 |
2 96
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) ) = ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ◡ ( 1st ↾ 𝐴 ) “ { 𝑦 } ) ↦ 𝐶 ) ) ) ) = ( 𝑊 Σg ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) ) ) ) |
| 99 |
23 98
|
eqtrd |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑊 Σg ( 𝑦 ∈ dom 𝐴 ↦ ( 𝑊 Σg ( 𝑧 ∈ ( 𝐴 “ { 𝑦 } ) ↦ 𝐷 ) ) ) ) ) |