Metamath Proof Explorer


Theorem imafi2

Description: The image by a finite set is finite. See also imafi . (Contributed by Thierry Arnoux, 25-Apr-2020)

Ref Expression
Assertion imafi2 ( 𝐴 ∈ Fin → ( 𝐴𝐵 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 df-ima ( 𝐴𝐵 ) = ran ( 𝐴𝐵 )
2 resss ( 𝐴𝐵 ) ⊆ 𝐴
3 ssfi ( ( 𝐴 ∈ Fin ∧ ( 𝐴𝐵 ) ⊆ 𝐴 ) → ( 𝐴𝐵 ) ∈ Fin )
4 2 3 mpan2 ( 𝐴 ∈ Fin → ( 𝐴𝐵 ) ∈ Fin )
5 rnfi ( ( 𝐴𝐵 ) ∈ Fin → ran ( 𝐴𝐵 ) ∈ Fin )
6 4 5 syl ( 𝐴 ∈ Fin → ran ( 𝐴𝐵 ) ∈ Fin )
7 1 6 eqeltrid ( 𝐴 ∈ Fin → ( 𝐴𝐵 ) ∈ Fin )