Metamath Proof Explorer


Theorem imafi2

Description: The image by a finite set is finite. See also imafi . (Contributed by Thierry Arnoux, 25-Apr-2020)

Ref Expression
Assertion imafi2
|- ( A e. Fin -> ( A " B ) e. Fin )

Proof

Step Hyp Ref Expression
1 df-ima
 |-  ( A " B ) = ran ( A |` B )
2 resss
 |-  ( A |` B ) C_ A
3 ssfi
 |-  ( ( A e. Fin /\ ( A |` B ) C_ A ) -> ( A |` B ) e. Fin )
4 2 3 mpan2
 |-  ( A e. Fin -> ( A |` B ) e. Fin )
5 rnfi
 |-  ( ( A |` B ) e. Fin -> ran ( A |` B ) e. Fin )
6 4 5 syl
 |-  ( A e. Fin -> ran ( A |` B ) e. Fin )
7 1 6 eqeltrid
 |-  ( A e. Fin -> ( A " B ) e. Fin )