Metamath Proof Explorer


Theorem imafi2

Description: The image by a finite set is finite. See also imafi . (Contributed by Thierry Arnoux, 25-Apr-2020)

Ref Expression
Assertion imafi2 AFinABFin

Proof

Step Hyp Ref Expression
1 df-ima AB=ranAB
2 resss ABA
3 ssfi AFinABAABFin
4 2 3 mpan2 AFinABFin
5 rnfi ABFinranABFin
6 4 5 syl AFinranABFin
7 1 6 eqeltrid AFinABFin