Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt2d.c |
|- F/_ z C |
2 |
|
gsummpt2d.0 |
|- F/ y ph |
3 |
|
gsummpt2d.b |
|- B = ( Base ` W ) |
4 |
|
gsummpt2d.1 |
|- ( x = <. y , z >. -> C = D ) |
5 |
|
gsummpt2d.r |
|- ( ph -> Rel A ) |
6 |
|
gsummpt2d.2 |
|- ( ph -> A e. Fin ) |
7 |
|
gsummpt2d.m |
|- ( ph -> W e. CMnd ) |
8 |
|
gsummpt2d.3 |
|- ( ( ph /\ x e. A ) -> C e. B ) |
9 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
10 |
6
|
dmexd |
|- ( ph -> dom A e. _V ) |
11 |
|
1stdm |
|- ( ( Rel A /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
12 |
5 11
|
sylan |
|- ( ( ph /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
13 |
|
fo1st |
|- 1st : _V -onto-> _V |
14 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
15 |
|
dffn5 |
|- ( 1st Fn _V <-> 1st = ( x e. _V |-> ( 1st ` x ) ) ) |
16 |
15
|
biimpi |
|- ( 1st Fn _V -> 1st = ( x e. _V |-> ( 1st ` x ) ) ) |
17 |
13 14 16
|
mp2b |
|- 1st = ( x e. _V |-> ( 1st ` x ) ) |
18 |
17
|
reseq1i |
|- ( 1st |` A ) = ( ( x e. _V |-> ( 1st ` x ) ) |` A ) |
19 |
|
ssv |
|- A C_ _V |
20 |
|
resmpt |
|- ( A C_ _V -> ( ( x e. _V |-> ( 1st ` x ) ) |` A ) = ( x e. A |-> ( 1st ` x ) ) ) |
21 |
19 20
|
ax-mp |
|- ( ( x e. _V |-> ( 1st ` x ) ) |` A ) = ( x e. A |-> ( 1st ` x ) ) |
22 |
18 21
|
eqtri |
|- ( 1st |` A ) = ( x e. A |-> ( 1st ` x ) ) |
23 |
3 9 7 6 10 8 12 22
|
gsummpt2co |
|- ( ph -> ( W gsum ( x e. A |-> C ) ) = ( W gsum ( y e. dom A |-> ( W gsum ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) ) ) ) |
24 |
7
|
adantr |
|- ( ( ph /\ y e. dom A ) -> W e. CMnd ) |
25 |
6
|
adantr |
|- ( ( ph /\ y e. dom A ) -> A e. Fin ) |
26 |
|
imaexg |
|- ( A e. Fin -> ( A " { y } ) e. _V ) |
27 |
25 26
|
syl |
|- ( ( ph /\ y e. dom A ) -> ( A " { y } ) e. _V ) |
28 |
4
|
adantl |
|- ( ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x e. A ) /\ x = <. y , z >. ) -> C = D ) |
29 |
|
simp-4l |
|- ( ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x e. A ) /\ x = <. y , z >. ) -> ph ) |
30 |
|
simplr |
|- ( ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x e. A ) /\ x = <. y , z >. ) -> x e. A ) |
31 |
29 30 8
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x e. A ) /\ x = <. y , z >. ) -> C e. B ) |
32 |
28 31
|
eqeltrrd |
|- ( ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x e. A ) /\ x = <. y , z >. ) -> D e. B ) |
33 |
|
vex |
|- y e. _V |
34 |
|
vex |
|- z e. _V |
35 |
33 34
|
elimasn |
|- ( z e. ( A " { y } ) <-> <. y , z >. e. A ) |
36 |
35
|
biimpi |
|- ( z e. ( A " { y } ) -> <. y , z >. e. A ) |
37 |
36
|
adantl |
|- ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) -> <. y , z >. e. A ) |
38 |
|
simpr |
|- ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x = <. y , z >. ) -> x = <. y , z >. ) |
39 |
38
|
eqeq1d |
|- ( ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) /\ x = <. y , z >. ) -> ( x = <. y , z >. <-> <. y , z >. = <. y , z >. ) ) |
40 |
|
eqidd |
|- ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) -> <. y , z >. = <. y , z >. ) |
41 |
37 39 40
|
rspcedvd |
|- ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) -> E. x e. A x = <. y , z >. ) |
42 |
32 41
|
r19.29a |
|- ( ( ( ph /\ y e. dom A ) /\ z e. ( A " { y } ) ) -> D e. B ) |
43 |
42
|
fmpttd |
|- ( ( ph /\ y e. dom A ) -> ( z e. ( A " { y } ) |-> D ) : ( A " { y } ) --> B ) |
44 |
|
eqid |
|- ( z e. ( A " { y } ) |-> D ) = ( z e. ( A " { y } ) |-> D ) |
45 |
|
imafi2 |
|- ( A e. Fin -> ( A " { y } ) e. Fin ) |
46 |
6 45
|
syl |
|- ( ph -> ( A " { y } ) e. Fin ) |
47 |
46
|
adantr |
|- ( ( ph /\ y e. dom A ) -> ( A " { y } ) e. Fin ) |
48 |
|
fvex |
|- ( 0g ` W ) e. _V |
49 |
48
|
a1i |
|- ( ( ph /\ y e. dom A ) -> ( 0g ` W ) e. _V ) |
50 |
44 47 42 49
|
fsuppmptdm |
|- ( ( ph /\ y e. dom A ) -> ( z e. ( A " { y } ) |-> D ) finSupp ( 0g ` W ) ) |
51 |
|
2ndconst |
|- ( y e. dom A -> ( 2nd |` ( { y } X. ( A " { y } ) ) ) : ( { y } X. ( A " { y } ) ) -1-1-onto-> ( A " { y } ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ y e. dom A ) -> ( 2nd |` ( { y } X. ( A " { y } ) ) ) : ( { y } X. ( A " { y } ) ) -1-1-onto-> ( A " { y } ) ) |
53 |
|
1stpreimas |
|- ( ( Rel A /\ y e. dom A ) -> ( `' ( 1st |` A ) " { y } ) = ( { y } X. ( A " { y } ) ) ) |
54 |
5 53
|
sylan |
|- ( ( ph /\ y e. dom A ) -> ( `' ( 1st |` A ) " { y } ) = ( { y } X. ( A " { y } ) ) ) |
55 |
54
|
reseq2d |
|- ( ( ph /\ y e. dom A ) -> ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) = ( 2nd |` ( { y } X. ( A " { y } ) ) ) ) |
56 |
55
|
f1oeq1d |
|- ( ( ph /\ y e. dom A ) -> ( ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) : ( { y } X. ( A " { y } ) ) -1-1-onto-> ( A " { y } ) <-> ( 2nd |` ( { y } X. ( A " { y } ) ) ) : ( { y } X. ( A " { y } ) ) -1-1-onto-> ( A " { y } ) ) ) |
57 |
52 56
|
mpbird |
|- ( ( ph /\ y e. dom A ) -> ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) : ( { y } X. ( A " { y } ) ) -1-1-onto-> ( A " { y } ) ) |
58 |
3 9 24 27 43 50 57
|
gsumf1o |
|- ( ( ph /\ y e. dom A ) -> ( W gsum ( z e. ( A " { y } ) |-> D ) ) = ( W gsum ( ( z e. ( A " { y } ) |-> D ) o. ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) ) ) ) |
59 |
|
simpr |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> x e. ( `' ( 1st |` A ) " { y } ) ) |
60 |
54
|
adantr |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> ( `' ( 1st |` A ) " { y } ) = ( { y } X. ( A " { y } ) ) ) |
61 |
59 60
|
eleqtrd |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> x e. ( { y } X. ( A " { y } ) ) ) |
62 |
|
xp2nd |
|- ( x e. ( { y } X. ( A " { y } ) ) -> ( 2nd ` x ) e. ( A " { y } ) ) |
63 |
61 62
|
syl |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> ( 2nd ` x ) e. ( A " { y } ) ) |
64 |
63
|
ralrimiva |
|- ( ( ph /\ y e. dom A ) -> A. x e. ( `' ( 1st |` A ) " { y } ) ( 2nd ` x ) e. ( A " { y } ) ) |
65 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
66 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
67 |
|
dffn5 |
|- ( 2nd Fn _V <-> 2nd = ( x e. _V |-> ( 2nd ` x ) ) ) |
68 |
67
|
biimpi |
|- ( 2nd Fn _V -> 2nd = ( x e. _V |-> ( 2nd ` x ) ) ) |
69 |
65 66 68
|
mp2b |
|- 2nd = ( x e. _V |-> ( 2nd ` x ) ) |
70 |
69
|
reseq1i |
|- ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) = ( ( x e. _V |-> ( 2nd ` x ) ) |` ( `' ( 1st |` A ) " { y } ) ) |
71 |
|
ssv |
|- ( `' ( 1st |` A ) " { y } ) C_ _V |
72 |
|
resmpt |
|- ( ( `' ( 1st |` A ) " { y } ) C_ _V -> ( ( x e. _V |-> ( 2nd ` x ) ) |` ( `' ( 1st |` A ) " { y } ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> ( 2nd ` x ) ) ) |
73 |
71 72
|
ax-mp |
|- ( ( x e. _V |-> ( 2nd ` x ) ) |` ( `' ( 1st |` A ) " { y } ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> ( 2nd ` x ) ) |
74 |
70 73
|
eqtri |
|- ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> ( 2nd ` x ) ) |
75 |
74
|
a1i |
|- ( ( ph /\ y e. dom A ) -> ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> ( 2nd ` x ) ) ) |
76 |
|
eqidd |
|- ( ( ph /\ y e. dom A ) -> ( z e. ( A " { y } ) |-> D ) = ( z e. ( A " { y } ) |-> D ) ) |
77 |
64 75 76
|
fmptcos |
|- ( ( ph /\ y e. dom A ) -> ( ( z e. ( A " { y } ) |-> D ) o. ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> [_ ( 2nd ` x ) / z ]_ D ) ) |
78 |
|
nfv |
|- F/ z ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) |
79 |
1
|
a1i |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> F/_ z C ) |
80 |
61
|
adantr |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> x e. ( { y } X. ( A " { y } ) ) ) |
81 |
|
xp1st |
|- ( x e. ( { y } X. ( A " { y } ) ) -> ( 1st ` x ) e. { y } ) |
82 |
80 81
|
syl |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> ( 1st ` x ) e. { y } ) |
83 |
|
fvex |
|- ( 1st ` x ) e. _V |
84 |
83
|
elsn |
|- ( ( 1st ` x ) e. { y } <-> ( 1st ` x ) = y ) |
85 |
82 84
|
sylib |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> ( 1st ` x ) = y ) |
86 |
|
simpr |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> z = ( 2nd ` x ) ) |
87 |
86
|
eqcomd |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> ( 2nd ` x ) = z ) |
88 |
|
eqopi |
|- ( ( x e. ( { y } X. ( A " { y } ) ) /\ ( ( 1st ` x ) = y /\ ( 2nd ` x ) = z ) ) -> x = <. y , z >. ) |
89 |
80 85 87 88
|
syl12anc |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> x = <. y , z >. ) |
90 |
89 4
|
syl |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> C = D ) |
91 |
90
|
eqcomd |
|- ( ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) /\ z = ( 2nd ` x ) ) -> D = C ) |
92 |
78 79 63 91
|
csbiedf |
|- ( ( ( ph /\ y e. dom A ) /\ x e. ( `' ( 1st |` A ) " { y } ) ) -> [_ ( 2nd ` x ) / z ]_ D = C ) |
93 |
92
|
mpteq2dva |
|- ( ( ph /\ y e. dom A ) -> ( x e. ( `' ( 1st |` A ) " { y } ) |-> [_ ( 2nd ` x ) / z ]_ D ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) |
94 |
77 93
|
eqtrd |
|- ( ( ph /\ y e. dom A ) -> ( ( z e. ( A " { y } ) |-> D ) o. ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) ) = ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) |
95 |
94
|
oveq2d |
|- ( ( ph /\ y e. dom A ) -> ( W gsum ( ( z e. ( A " { y } ) |-> D ) o. ( 2nd |` ( `' ( 1st |` A ) " { y } ) ) ) ) = ( W gsum ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) ) |
96 |
58 95
|
eqtr2d |
|- ( ( ph /\ y e. dom A ) -> ( W gsum ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) = ( W gsum ( z e. ( A " { y } ) |-> D ) ) ) |
97 |
2 96
|
mpteq2da |
|- ( ph -> ( y e. dom A |-> ( W gsum ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) ) = ( y e. dom A |-> ( W gsum ( z e. ( A " { y } ) |-> D ) ) ) ) |
98 |
97
|
oveq2d |
|- ( ph -> ( W gsum ( y e. dom A |-> ( W gsum ( x e. ( `' ( 1st |` A ) " { y } ) |-> C ) ) ) ) = ( W gsum ( y e. dom A |-> ( W gsum ( z e. ( A " { y } ) |-> D ) ) ) ) ) |
99 |
23 98
|
eqtrd |
|- ( ph -> ( W gsum ( x e. A |-> C ) ) = ( W gsum ( y e. dom A |-> ( W gsum ( z e. ( A " { y } ) |-> D ) ) ) ) ) |