| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1st2ndb |
|- ( z e. ( _V X. _V ) <-> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 2 |
1
|
biimpi |
|- ( z e. ( _V X. _V ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 3 |
2
|
ad2antrl |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 4 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 5 |
4
|
elsn |
|- ( ( 1st ` z ) e. { X } <-> ( 1st ` z ) = X ) |
| 6 |
5
|
biimpi |
|- ( ( 1st ` z ) e. { X } -> ( 1st ` z ) = X ) |
| 7 |
6
|
ad2antrl |
|- ( ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) -> ( 1st ` z ) = X ) |
| 8 |
7
|
adantl |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> ( 1st ` z ) = X ) |
| 9 |
8
|
opeq1d |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. = <. X , ( 2nd ` z ) >. ) |
| 10 |
3 9
|
eqtrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> z = <. X , ( 2nd ` z ) >. ) |
| 11 |
|
simplr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> X e. V ) |
| 12 |
|
simprrr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> ( 2nd ` z ) e. ( A " { X } ) ) |
| 13 |
|
elimasng |
|- ( ( X e. V /\ ( 2nd ` z ) e. ( A " { X } ) ) -> ( ( 2nd ` z ) e. ( A " { X } ) <-> <. X , ( 2nd ` z ) >. e. A ) ) |
| 14 |
13
|
biimpa |
|- ( ( ( X e. V /\ ( 2nd ` z ) e. ( A " { X } ) ) /\ ( 2nd ` z ) e. ( A " { X } ) ) -> <. X , ( 2nd ` z ) >. e. A ) |
| 15 |
11 12 12 14
|
syl21anc |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> <. X , ( 2nd ` z ) >. e. A ) |
| 16 |
10 15
|
eqeltrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> z e. A ) |
| 17 |
|
fvres |
|- ( z e. A -> ( ( 1st |` A ) ` z ) = ( 1st ` z ) ) |
| 18 |
16 17
|
syl |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> ( ( 1st |` A ) ` z ) = ( 1st ` z ) ) |
| 19 |
18 8
|
eqtrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> ( ( 1st |` A ) ` z ) = X ) |
| 20 |
16 19
|
jca |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) -> ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) |
| 21 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
| 22 |
21
|
biimpi |
|- ( Rel A -> A C_ ( _V X. _V ) ) |
| 23 |
22
|
adantr |
|- ( ( Rel A /\ X e. V ) -> A C_ ( _V X. _V ) ) |
| 24 |
23
|
sselda |
|- ( ( ( Rel A /\ X e. V ) /\ z e. A ) -> z e. ( _V X. _V ) ) |
| 25 |
24
|
adantrr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> z e. ( _V X. _V ) ) |
| 26 |
17
|
ad2antrl |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( ( 1st |` A ) ` z ) = ( 1st ` z ) ) |
| 27 |
|
simprr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( ( 1st |` A ) ` z ) = X ) |
| 28 |
26 27
|
eqtr3d |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( 1st ` z ) = X ) |
| 29 |
28 5
|
sylibr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( 1st ` z ) e. { X } ) |
| 30 |
28 29
|
eqeltrrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> X e. { X } ) |
| 31 |
|
simpr |
|- ( ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) /\ x = X ) -> x = X ) |
| 32 |
31
|
opeq1d |
|- ( ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) /\ x = X ) -> <. x , ( 2nd ` z ) >. = <. X , ( 2nd ` z ) >. ) |
| 33 |
32
|
eleq1d |
|- ( ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) /\ x = X ) -> ( <. x , ( 2nd ` z ) >. e. A <-> <. X , ( 2nd ` z ) >. e. A ) ) |
| 34 |
|
1st2nd |
|- ( ( Rel A /\ z e. A ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 35 |
34
|
ad2ant2r |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 36 |
28
|
opeq1d |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. = <. X , ( 2nd ` z ) >. ) |
| 37 |
35 36
|
eqtrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> z = <. X , ( 2nd ` z ) >. ) |
| 38 |
|
simprl |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> z e. A ) |
| 39 |
37 38
|
eqeltrrd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> <. X , ( 2nd ` z ) >. e. A ) |
| 40 |
30 33 39
|
rspcedvd |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> E. x e. { X } <. x , ( 2nd ` z ) >. e. A ) |
| 41 |
|
df-rex |
|- ( E. x e. { X } <. x , ( 2nd ` z ) >. e. A <-> E. x ( x e. { X } /\ <. x , ( 2nd ` z ) >. e. A ) ) |
| 42 |
40 41
|
sylib |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> E. x ( x e. { X } /\ <. x , ( 2nd ` z ) >. e. A ) ) |
| 43 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 44 |
43
|
elima3 |
|- ( ( 2nd ` z ) e. ( A " { X } ) <-> E. x ( x e. { X } /\ <. x , ( 2nd ` z ) >. e. A ) ) |
| 45 |
42 44
|
sylibr |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( 2nd ` z ) e. ( A " { X } ) ) |
| 46 |
29 45
|
jca |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) |
| 47 |
25 46
|
jca |
|- ( ( ( Rel A /\ X e. V ) /\ ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) -> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) |
| 48 |
20 47
|
impbida |
|- ( ( Rel A /\ X e. V ) -> ( ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) <-> ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) ) |
| 49 |
|
elxp7 |
|- ( z e. ( { X } X. ( A " { X } ) ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) |
| 50 |
49
|
a1i |
|- ( ( Rel A /\ X e. V ) -> ( z e. ( { X } X. ( A " { X } ) ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. { X } /\ ( 2nd ` z ) e. ( A " { X } ) ) ) ) ) |
| 51 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 52 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
| 53 |
51 52
|
ax-mp |
|- 1st Fn _V |
| 54 |
|
ssv |
|- A C_ _V |
| 55 |
|
fnssres |
|- ( ( 1st Fn _V /\ A C_ _V ) -> ( 1st |` A ) Fn A ) |
| 56 |
53 54 55
|
mp2an |
|- ( 1st |` A ) Fn A |
| 57 |
|
fniniseg |
|- ( ( 1st |` A ) Fn A -> ( z e. ( `' ( 1st |` A ) " { X } ) <-> ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) ) |
| 58 |
56 57
|
ax-mp |
|- ( z e. ( `' ( 1st |` A ) " { X } ) <-> ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) |
| 59 |
58
|
a1i |
|- ( ( Rel A /\ X e. V ) -> ( z e. ( `' ( 1st |` A ) " { X } ) <-> ( z e. A /\ ( ( 1st |` A ) ` z ) = X ) ) ) |
| 60 |
48 50 59
|
3bitr4rd |
|- ( ( Rel A /\ X e. V ) -> ( z e. ( `' ( 1st |` A ) " { X } ) <-> z e. ( { X } X. ( A " { X } ) ) ) ) |
| 61 |
60
|
eqrdv |
|- ( ( Rel A /\ X e. V ) -> ( `' ( 1st |` A ) " { X } ) = ( { X } X. ( A " { X } ) ) ) |