Metamath Proof Explorer


Theorem 1stpreimas

Description: The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020)

Ref Expression
Assertion 1stpreimas RelAXV1stA-1X=X×AX

Proof

Step Hyp Ref Expression
1 1st2ndb zV×Vz=1stz2ndz
2 1 biimpi zV×Vz=1stz2ndz
3 2 ad2antrl RelAXVzV×V1stzX2ndzAXz=1stz2ndz
4 fvex 1stzV
5 4 elsn 1stzX1stz=X
6 5 biimpi 1stzX1stz=X
7 6 ad2antrl zV×V1stzX2ndzAX1stz=X
8 7 adantl RelAXVzV×V1stzX2ndzAX1stz=X
9 8 opeq1d RelAXVzV×V1stzX2ndzAX1stz2ndz=X2ndz
10 3 9 eqtrd RelAXVzV×V1stzX2ndzAXz=X2ndz
11 simplr RelAXVzV×V1stzX2ndzAXXV
12 simprrr RelAXVzV×V1stzX2ndzAX2ndzAX
13 elimasng XV2ndzAX2ndzAXX2ndzA
14 13 biimpa XV2ndzAX2ndzAXX2ndzA
15 11 12 12 14 syl21anc RelAXVzV×V1stzX2ndzAXX2ndzA
16 10 15 eqeltrd RelAXVzV×V1stzX2ndzAXzA
17 fvres zA1stAz=1stz
18 16 17 syl RelAXVzV×V1stzX2ndzAX1stAz=1stz
19 18 8 eqtrd RelAXVzV×V1stzX2ndzAX1stAz=X
20 16 19 jca RelAXVzV×V1stzX2ndzAXzA1stAz=X
21 df-rel RelAAV×V
22 21 biimpi RelAAV×V
23 22 adantr RelAXVAV×V
24 23 sselda RelAXVzAzV×V
25 24 adantrr RelAXVzA1stAz=XzV×V
26 17 ad2antrl RelAXVzA1stAz=X1stAz=1stz
27 simprr RelAXVzA1stAz=X1stAz=X
28 26 27 eqtr3d RelAXVzA1stAz=X1stz=X
29 28 5 sylibr RelAXVzA1stAz=X1stzX
30 28 29 eqeltrrd RelAXVzA1stAz=XXX
31 simpr RelAXVzA1stAz=Xx=Xx=X
32 31 opeq1d RelAXVzA1stAz=Xx=Xx2ndz=X2ndz
33 32 eleq1d RelAXVzA1stAz=Xx=Xx2ndzAX2ndzA
34 1st2nd RelAzAz=1stz2ndz
35 34 ad2ant2r RelAXVzA1stAz=Xz=1stz2ndz
36 28 opeq1d RelAXVzA1stAz=X1stz2ndz=X2ndz
37 35 36 eqtrd RelAXVzA1stAz=Xz=X2ndz
38 simprl RelAXVzA1stAz=XzA
39 37 38 eqeltrrd RelAXVzA1stAz=XX2ndzA
40 30 33 39 rspcedvd RelAXVzA1stAz=XxXx2ndzA
41 df-rex xXx2ndzAxxXx2ndzA
42 40 41 sylib RelAXVzA1stAz=XxxXx2ndzA
43 fvex 2ndzV
44 43 elima3 2ndzAXxxXx2ndzA
45 42 44 sylibr RelAXVzA1stAz=X2ndzAX
46 29 45 jca RelAXVzA1stAz=X1stzX2ndzAX
47 25 46 jca RelAXVzA1stAz=XzV×V1stzX2ndzAX
48 20 47 impbida RelAXVzV×V1stzX2ndzAXzA1stAz=X
49 elxp7 zX×AXzV×V1stzX2ndzAX
50 49 a1i RelAXVzX×AXzV×V1stzX2ndzAX
51 fo1st 1st:VontoV
52 fofn 1st:VontoV1stFnV
53 51 52 ax-mp 1stFnV
54 ssv AV
55 fnssres 1stFnVAV1stAFnA
56 53 54 55 mp2an 1stAFnA
57 fniniseg 1stAFnAz1stA-1XzA1stAz=X
58 56 57 ax-mp z1stA-1XzA1stAz=X
59 58 a1i RelAXVz1stA-1XzA1stAz=X
60 48 50 59 3bitr4rd RelAXVz1stA-1XzX×AX
61 60 eqrdv RelAXV1stA-1X=X×AX