| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1st2ndb |
|
| 2 |
1
|
biimpi |
|
| 3 |
2
|
ad2antrl |
|
| 4 |
|
fvex |
|
| 5 |
4
|
elsn |
|
| 6 |
5
|
biimpi |
|
| 7 |
6
|
ad2antrl |
|
| 8 |
7
|
adantl |
|
| 9 |
8
|
opeq1d |
|
| 10 |
3 9
|
eqtrd |
|
| 11 |
|
simplr |
|
| 12 |
|
simprrr |
|
| 13 |
|
elimasng |
|
| 14 |
13
|
biimpa |
|
| 15 |
11 12 12 14
|
syl21anc |
|
| 16 |
10 15
|
eqeltrd |
|
| 17 |
|
fvres |
|
| 18 |
16 17
|
syl |
|
| 19 |
18 8
|
eqtrd |
|
| 20 |
16 19
|
jca |
|
| 21 |
|
df-rel |
|
| 22 |
21
|
biimpi |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
sselda |
|
| 25 |
24
|
adantrr |
|
| 26 |
17
|
ad2antrl |
|
| 27 |
|
simprr |
|
| 28 |
26 27
|
eqtr3d |
|
| 29 |
28 5
|
sylibr |
|
| 30 |
28 29
|
eqeltrrd |
|
| 31 |
|
simpr |
|
| 32 |
31
|
opeq1d |
|
| 33 |
32
|
eleq1d |
|
| 34 |
|
1st2nd |
|
| 35 |
34
|
ad2ant2r |
|
| 36 |
28
|
opeq1d |
|
| 37 |
35 36
|
eqtrd |
|
| 38 |
|
simprl |
|
| 39 |
37 38
|
eqeltrrd |
|
| 40 |
30 33 39
|
rspcedvd |
|
| 41 |
|
df-rex |
|
| 42 |
40 41
|
sylib |
|
| 43 |
|
fvex |
|
| 44 |
43
|
elima3 |
|
| 45 |
42 44
|
sylibr |
|
| 46 |
29 45
|
jca |
|
| 47 |
25 46
|
jca |
|
| 48 |
20 47
|
impbida |
|
| 49 |
|
elxp7 |
|
| 50 |
49
|
a1i |
|
| 51 |
|
fo1st |
|
| 52 |
|
fofn |
|
| 53 |
51 52
|
ax-mp |
|
| 54 |
|
ssv |
|
| 55 |
|
fnssres |
|
| 56 |
53 54 55
|
mp2an |
|
| 57 |
|
fniniseg |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
58
|
a1i |
|
| 60 |
48 50 59
|
3bitr4rd |
|
| 61 |
60
|
eqrdv |
|