Metamath Proof Explorer


Theorem 1stpreimas

Description: The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020)

Ref Expression
Assertion 1stpreimas Rel A X V 1 st A -1 X = X × A X

Proof

Step Hyp Ref Expression
1 1st2ndb z V × V z = 1 st z 2 nd z
2 1 biimpi z V × V z = 1 st z 2 nd z
3 2 ad2antrl Rel A X V z V × V 1 st z X 2 nd z A X z = 1 st z 2 nd z
4 fvex 1 st z V
5 4 elsn 1 st z X 1 st z = X
6 5 biimpi 1 st z X 1 st z = X
7 6 ad2antrl z V × V 1 st z X 2 nd z A X 1 st z = X
8 7 adantl Rel A X V z V × V 1 st z X 2 nd z A X 1 st z = X
9 8 opeq1d Rel A X V z V × V 1 st z X 2 nd z A X 1 st z 2 nd z = X 2 nd z
10 3 9 eqtrd Rel A X V z V × V 1 st z X 2 nd z A X z = X 2 nd z
11 simplr Rel A X V z V × V 1 st z X 2 nd z A X X V
12 simprrr Rel A X V z V × V 1 st z X 2 nd z A X 2 nd z A X
13 elimasng X V 2 nd z A X 2 nd z A X X 2 nd z A
14 13 biimpa X V 2 nd z A X 2 nd z A X X 2 nd z A
15 11 12 12 14 syl21anc Rel A X V z V × V 1 st z X 2 nd z A X X 2 nd z A
16 10 15 eqeltrd Rel A X V z V × V 1 st z X 2 nd z A X z A
17 fvres z A 1 st A z = 1 st z
18 16 17 syl Rel A X V z V × V 1 st z X 2 nd z A X 1 st A z = 1 st z
19 18 8 eqtrd Rel A X V z V × V 1 st z X 2 nd z A X 1 st A z = X
20 16 19 jca Rel A X V z V × V 1 st z X 2 nd z A X z A 1 st A z = X
21 df-rel Rel A A V × V
22 21 biimpi Rel A A V × V
23 22 adantr Rel A X V A V × V
24 23 sselda Rel A X V z A z V × V
25 24 adantrr Rel A X V z A 1 st A z = X z V × V
26 17 ad2antrl Rel A X V z A 1 st A z = X 1 st A z = 1 st z
27 simprr Rel A X V z A 1 st A z = X 1 st A z = X
28 26 27 eqtr3d Rel A X V z A 1 st A z = X 1 st z = X
29 28 5 sylibr Rel A X V z A 1 st A z = X 1 st z X
30 28 29 eqeltrrd Rel A X V z A 1 st A z = X X X
31 simpr Rel A X V z A 1 st A z = X x = X x = X
32 31 opeq1d Rel A X V z A 1 st A z = X x = X x 2 nd z = X 2 nd z
33 32 eleq1d Rel A X V z A 1 st A z = X x = X x 2 nd z A X 2 nd z A
34 1st2nd Rel A z A z = 1 st z 2 nd z
35 34 ad2ant2r Rel A X V z A 1 st A z = X z = 1 st z 2 nd z
36 28 opeq1d Rel A X V z A 1 st A z = X 1 st z 2 nd z = X 2 nd z
37 35 36 eqtrd Rel A X V z A 1 st A z = X z = X 2 nd z
38 simprl Rel A X V z A 1 st A z = X z A
39 37 38 eqeltrrd Rel A X V z A 1 st A z = X X 2 nd z A
40 30 33 39 rspcedvd Rel A X V z A 1 st A z = X x X x 2 nd z A
41 df-rex x X x 2 nd z A x x X x 2 nd z A
42 40 41 sylib Rel A X V z A 1 st A z = X x x X x 2 nd z A
43 fvex 2 nd z V
44 43 elima3 2 nd z A X x x X x 2 nd z A
45 42 44 sylibr Rel A X V z A 1 st A z = X 2 nd z A X
46 29 45 jca Rel A X V z A 1 st A z = X 1 st z X 2 nd z A X
47 25 46 jca Rel A X V z A 1 st A z = X z V × V 1 st z X 2 nd z A X
48 20 47 impbida Rel A X V z V × V 1 st z X 2 nd z A X z A 1 st A z = X
49 elxp7 z X × A X z V × V 1 st z X 2 nd z A X
50 49 a1i Rel A X V z X × A X z V × V 1 st z X 2 nd z A X
51 fo1st 1 st : V onto V
52 fofn 1 st : V onto V 1 st Fn V
53 51 52 ax-mp 1 st Fn V
54 ssv A V
55 fnssres 1 st Fn V A V 1 st A Fn A
56 53 54 55 mp2an 1 st A Fn A
57 fniniseg 1 st A Fn A z 1 st A -1 X z A 1 st A z = X
58 56 57 ax-mp z 1 st A -1 X z A 1 st A z = X
59 58 a1i Rel A X V z 1 st A -1 X z A 1 st A z = X
60 48 50 59 3bitr4rd Rel A X V z 1 st A -1 X z X × A X
61 60 eqrdv Rel A X V 1 st A -1 X = X × A X