Metamath Proof Explorer


Theorem 1stpreima

Description: The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017)

Ref Expression
Assertion 1stpreima A B 1 st B × C -1 A = A × C

Proof

Step Hyp Ref Expression
1 elxp7 w B × C w V × V 1 st w B 2 nd w C
2 1 anbi2i 1 st w A w B × C 1 st w A w V × V 1 st w B 2 nd w C
3 anass 1 st w A 1 st w B w V × V 2 nd w C 1 st w A 1 st w B w V × V 2 nd w C
4 3 a1i A B 1 st w A 1 st w B w V × V 2 nd w C 1 st w A 1 st w B w V × V 2 nd w C
5 ssel A B 1 st w A 1 st w B
6 5 pm4.71d A B 1 st w A 1 st w A 1 st w B
7 6 anbi1d A B 1 st w A w V × V 2 nd w C 1 st w A 1 st w B w V × V 2 nd w C
8 an12 w V × V 1 st w B 2 nd w C 1 st w B w V × V 2 nd w C
9 8 anbi2i 1 st w A w V × V 1 st w B 2 nd w C 1 st w A 1 st w B w V × V 2 nd w C
10 9 a1i A B 1 st w A w V × V 1 st w B 2 nd w C 1 st w A 1 st w B w V × V 2 nd w C
11 4 7 10 3bitr4d A B 1 st w A w V × V 2 nd w C 1 st w A w V × V 1 st w B 2 nd w C
12 2 11 bitr4id A B 1 st w A w B × C 1 st w A w V × V 2 nd w C
13 an12 1 st w A w V × V 2 nd w C w V × V 1 st w A 2 nd w C
14 12 13 bitrdi A B 1 st w A w B × C w V × V 1 st w A 2 nd w C
15 cnvresima 1 st B × C -1 A = 1 st -1 A B × C
16 15 eleq2i w 1 st B × C -1 A w 1 st -1 A B × C
17 elin w 1 st -1 A B × C w 1 st -1 A w B × C
18 vex w V
19 fo1st 1 st : V onto V
20 fofn 1 st : V onto V 1 st Fn V
21 elpreima 1 st Fn V w 1 st -1 A w V 1 st w A
22 19 20 21 mp2b w 1 st -1 A w V 1 st w A
23 18 22 mpbiran w 1 st -1 A 1 st w A
24 23 anbi1i w 1 st -1 A w B × C 1 st w A w B × C
25 16 17 24 3bitri w 1 st B × C -1 A 1 st w A w B × C
26 elxp7 w A × C w V × V 1 st w A 2 nd w C
27 14 25 26 3bitr4g A B w 1 st B × C -1 A w A × C
28 27 eqrdv A B 1 st B × C -1 A = A × C