Metamath Proof Explorer


Theorem fo1st

Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo1st
|- 1st : _V -onto-> _V

Proof

Step Hyp Ref Expression
1 snex
 |-  { x } e. _V
2 1 dmex
 |-  dom { x } e. _V
3 2 uniex
 |-  U. dom { x } e. _V
4 df-1st
 |-  1st = ( x e. _V |-> U. dom { x } )
5 3 4 fnmpti
 |-  1st Fn _V
6 4 rnmpt
 |-  ran 1st = { y | E. x e. _V y = U. dom { x } }
7 vex
 |-  y e. _V
8 opex
 |-  <. y , y >. e. _V
9 7 7 op1sta
 |-  U. dom { <. y , y >. } = y
10 9 eqcomi
 |-  y = U. dom { <. y , y >. }
11 sneq
 |-  ( x = <. y , y >. -> { x } = { <. y , y >. } )
12 11 dmeqd
 |-  ( x = <. y , y >. -> dom { x } = dom { <. y , y >. } )
13 12 unieqd
 |-  ( x = <. y , y >. -> U. dom { x } = U. dom { <. y , y >. } )
14 13 rspceeqv
 |-  ( ( <. y , y >. e. _V /\ y = U. dom { <. y , y >. } ) -> E. x e. _V y = U. dom { x } )
15 8 10 14 mp2an
 |-  E. x e. _V y = U. dom { x }
16 7 15 2th
 |-  ( y e. _V <-> E. x e. _V y = U. dom { x } )
17 16 abbi2i
 |-  _V = { y | E. x e. _V y = U. dom { x } }
18 6 17 eqtr4i
 |-  ran 1st = _V
19 df-fo
 |-  ( 1st : _V -onto-> _V <-> ( 1st Fn _V /\ ran 1st = _V ) )
20 5 18 19 mpbir2an
 |-  1st : _V -onto-> _V