| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptcof.1 |
|- ( ph -> A. x e. A R e. B ) |
| 2 |
|
fmptcof.2 |
|- ( ph -> F = ( x e. A |-> R ) ) |
| 3 |
|
fmptcof.3 |
|- ( ph -> G = ( y e. B |-> S ) ) |
| 4 |
|
nfcv |
|- F/_ z S |
| 5 |
|
nfcsb1v |
|- F/_ y [_ z / y ]_ S |
| 6 |
|
csbeq1a |
|- ( y = z -> S = [_ z / y ]_ S ) |
| 7 |
4 5 6
|
cbvmpt |
|- ( y e. B |-> S ) = ( z e. B |-> [_ z / y ]_ S ) |
| 8 |
3 7
|
eqtrdi |
|- ( ph -> G = ( z e. B |-> [_ z / y ]_ S ) ) |
| 9 |
|
csbeq1 |
|- ( z = R -> [_ z / y ]_ S = [_ R / y ]_ S ) |
| 10 |
1 2 8 9
|
fmptcof |
|- ( ph -> ( G o. F ) = ( x e. A |-> [_ R / y ]_ S ) ) |