Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt2d.c |
|
2 |
|
gsummpt2d.0 |
|
3 |
|
gsummpt2d.b |
|
4 |
|
gsummpt2d.1 |
|
5 |
|
gsummpt2d.r |
|
6 |
|
gsummpt2d.2 |
|
7 |
|
gsummpt2d.m |
|
8 |
|
gsummpt2d.3 |
|
9 |
|
eqid |
|
10 |
6
|
dmexd |
|
11 |
|
1stdm |
|
12 |
5 11
|
sylan |
|
13 |
|
fo1st |
|
14 |
|
fofn |
|
15 |
|
dffn5 |
|
16 |
15
|
biimpi |
|
17 |
13 14 16
|
mp2b |
|
18 |
17
|
reseq1i |
|
19 |
|
ssv |
|
20 |
|
resmpt |
|
21 |
19 20
|
ax-mp |
|
22 |
18 21
|
eqtri |
|
23 |
3 9 7 6 10 8 12 22
|
gsummpt2co |
|
24 |
7
|
adantr |
|
25 |
6
|
adantr |
|
26 |
|
imaexg |
|
27 |
25 26
|
syl |
|
28 |
4
|
adantl |
|
29 |
|
simp-4l |
|
30 |
|
simplr |
|
31 |
29 30 8
|
syl2anc |
|
32 |
28 31
|
eqeltrrd |
|
33 |
|
vex |
|
34 |
|
vex |
|
35 |
33 34
|
elimasn |
|
36 |
35
|
biimpi |
|
37 |
36
|
adantl |
|
38 |
|
simpr |
|
39 |
38
|
eqeq1d |
|
40 |
|
eqidd |
|
41 |
37 39 40
|
rspcedvd |
|
42 |
32 41
|
r19.29a |
|
43 |
42
|
fmpttd |
|
44 |
|
eqid |
|
45 |
|
imafi2 |
|
46 |
6 45
|
syl |
|
47 |
46
|
adantr |
|
48 |
|
fvex |
|
49 |
48
|
a1i |
|
50 |
44 47 42 49
|
fsuppmptdm |
|
51 |
|
2ndconst |
|
52 |
51
|
adantl |
|
53 |
|
1stpreimas |
|
54 |
5 53
|
sylan |
|
55 |
54
|
reseq2d |
|
56 |
55
|
f1oeq1d |
|
57 |
52 56
|
mpbird |
|
58 |
3 9 24 27 43 50 57
|
gsumf1o |
|
59 |
|
simpr |
|
60 |
54
|
adantr |
|
61 |
59 60
|
eleqtrd |
|
62 |
|
xp2nd |
|
63 |
61 62
|
syl |
|
64 |
63
|
ralrimiva |
|
65 |
|
fo2nd |
|
66 |
|
fofn |
|
67 |
|
dffn5 |
|
68 |
67
|
biimpi |
|
69 |
65 66 68
|
mp2b |
|
70 |
69
|
reseq1i |
|
71 |
|
ssv |
|
72 |
|
resmpt |
|
73 |
71 72
|
ax-mp |
|
74 |
70 73
|
eqtri |
|
75 |
74
|
a1i |
|
76 |
|
eqidd |
|
77 |
64 75 76
|
fmptcos |
|
78 |
|
nfv |
|
79 |
1
|
a1i |
|
80 |
61
|
adantr |
|
81 |
|
xp1st |
|
82 |
80 81
|
syl |
|
83 |
|
fvex |
|
84 |
83
|
elsn |
|
85 |
82 84
|
sylib |
|
86 |
|
simpr |
|
87 |
86
|
eqcomd |
|
88 |
|
eqopi |
|
89 |
80 85 87 88
|
syl12anc |
|
90 |
89 4
|
syl |
|
91 |
90
|
eqcomd |
|
92 |
78 79 63 91
|
csbiedf |
|
93 |
92
|
mpteq2dva |
|
94 |
77 93
|
eqtrd |
|
95 |
94
|
oveq2d |
|
96 |
58 95
|
eqtr2d |
|
97 |
2 96
|
mpteq2da |
|
98 |
97
|
oveq2d |
|
99 |
23 98
|
eqtrd |
|