Metamath Proof Explorer


Theorem gsumsra

Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)

Ref Expression
Hypotheses gsumsra.1
|- A = ( ( subringAlg ` R ) ` B )
gsumsra.2
|- ( ph -> F e. U )
gsumsra.3
|- ( ph -> R e. V )
gsumsra.4
|- ( ph -> A e. W )
gsumsra.5
|- ( ph -> B C_ ( Base ` R ) )
Assertion gsumsra
|- ( ph -> ( R gsum F ) = ( A gsum F ) )

Proof

Step Hyp Ref Expression
1 gsumsra.1
 |-  A = ( ( subringAlg ` R ) ` B )
2 gsumsra.2
 |-  ( ph -> F e. U )
3 gsumsra.3
 |-  ( ph -> R e. V )
4 gsumsra.4
 |-  ( ph -> A e. W )
5 gsumsra.5
 |-  ( ph -> B C_ ( Base ` R ) )
6 1 a1i
 |-  ( ph -> A = ( ( subringAlg ` R ) ` B ) )
7 6 5 srabase
 |-  ( ph -> ( Base ` R ) = ( Base ` A ) )
8 6 5 sraaddg
 |-  ( ph -> ( +g ` R ) = ( +g ` A ) )
9 2 3 4 7 8 gsumpropd
 |-  ( ph -> ( R gsum F ) = ( A gsum F ) )