Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsra.1 | |- A = ( ( subringAlg ` R ) ` B ) |
|
| gsumsra.2 | |- ( ph -> F e. U ) |
||
| gsumsra.3 | |- ( ph -> R e. V ) |
||
| gsumsra.4 | |- ( ph -> A e. W ) |
||
| gsumsra.5 | |- ( ph -> B C_ ( Base ` R ) ) |
||
| Assertion | gsumsra | |- ( ph -> ( R gsum F ) = ( A gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsra.1 | |- A = ( ( subringAlg ` R ) ` B ) |
|
| 2 | gsumsra.2 | |- ( ph -> F e. U ) |
|
| 3 | gsumsra.3 | |- ( ph -> R e. V ) |
|
| 4 | gsumsra.4 | |- ( ph -> A e. W ) |
|
| 5 | gsumsra.5 | |- ( ph -> B C_ ( Base ` R ) ) |
|
| 6 | 1 | a1i | |- ( ph -> A = ( ( subringAlg ` R ) ` B ) ) |
| 7 | 6 5 | srabase | |- ( ph -> ( Base ` R ) = ( Base ` A ) ) |
| 8 | 6 5 | sraaddg | |- ( ph -> ( +g ` R ) = ( +g ` A ) ) |
| 9 | 2 3 4 7 8 | gsumpropd | |- ( ph -> ( R gsum F ) = ( A gsum F ) ) |