Description: The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsra.1 | ||
| gsumsra.2 | |||
| gsumsra.3 | |||
| gsumsra.4 | |||
| gsumsra.5 | |||
| Assertion | gsumsra |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsra.1 | ||
| 2 | gsumsra.2 | ||
| 3 | gsumsra.3 | ||
| 4 | gsumsra.4 | ||
| 5 | gsumsra.5 | ||
| 6 | 1 | a1i | |
| 7 | 6 5 | srabase | |
| 8 | 6 5 | sraaddg | |
| 9 | 2 3 4 7 8 | gsumpropd |