| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdg1id |
|- ( ( E /FldExt F /\ ( E [:] F ) = 1 ) -> E = F ) |
| 2 |
|
oveq1 |
|- ( E = F -> ( E [:] F ) = ( F [:] F ) ) |
| 3 |
2
|
adantl |
|- ( ( E /FldExt F /\ E = F ) -> ( E [:] F ) = ( F [:] F ) ) |
| 4 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
| 5 |
4
|
adantr |
|- ( ( E /FldExt F /\ E = F ) -> F e. Field ) |
| 6 |
|
extdgid |
|- ( F e. Field -> ( F [:] F ) = 1 ) |
| 7 |
5 6
|
syl |
|- ( ( E /FldExt F /\ E = F ) -> ( F [:] F ) = 1 ) |
| 8 |
3 7
|
eqtrd |
|- ( ( E /FldExt F /\ E = F ) -> ( E [:] F ) = 1 ) |
| 9 |
1 8
|
impbida |
|- ( E /FldExt F -> ( ( E [:] F ) = 1 <-> E = F ) ) |