Metamath Proof Explorer


Theorem extdg1b

Description: The degree of the extension E /FldExt F is 1 iff E and F are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023)

Ref Expression
Assertion extdg1b E /FldExt F E .:. F = 1 E = F

Proof

Step Hyp Ref Expression
1 extdg1id E /FldExt F E .:. F = 1 E = F
2 oveq1 E = F E .:. F = F .:. F
3 2 adantl E /FldExt F E = F E .:. F = F .:. F
4 fldextfld2 E /FldExt F F Field
5 4 adantr E /FldExt F E = F F Field
6 extdgid F Field F .:. F = 1
7 5 6 syl E /FldExt F E = F F .:. F = 1
8 3 7 eqtrd E /FldExt F E = F E .:. F = 1
9 1 8 impbida E /FldExt F E .:. F = 1 E = F