Metamath Proof Explorer


Theorem fldextchr

Description: The characteristic of a subfield is the same as the characteristic of the larger field. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion fldextchr E /FldExt F chr F = chr E

Proof

Step Hyp Ref Expression
1 fldextress E /FldExt F F = E 𝑠 Base F
2 1 fveq2d E /FldExt F chr F = chr E 𝑠 Base F
3 eqid Base F = Base F
4 3 fldextsubrg E /FldExt F Base F SubRing E
5 subrgchr Base F SubRing E chr E 𝑠 Base F = chr E
6 4 5 syl E /FldExt F chr E 𝑠 Base F = chr E
7 2 6 eqtrd E /FldExt F chr F = chr E