Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|
2 |
|
ax-resscn |
|
3 |
|
eqidd |
|
4 |
3
|
mptru |
|
5 |
|
cnfldbas |
|
6 |
4 5
|
sraring |
|
7 |
1 2 6
|
mp2an |
|
8 |
|
ringgrp |
|
9 |
7 8
|
ax-mp |
|
10 |
|
refld |
|
11 |
|
isfld |
|
12 |
10 11
|
mpbi |
|
13 |
12
|
simpli |
|
14 |
|
drngring |
|
15 |
13 14
|
ax-mp |
|
16 |
|
simpr1 |
|
17 |
16
|
recnd |
|
18 |
|
simpr3 |
|
19 |
17 18
|
mulcld |
|
20 |
|
simpr2 |
|
21 |
17 18 20
|
adddid |
|
22 |
|
simpl |
|
23 |
22
|
recnd |
|
24 |
23 17 18
|
adddird |
|
25 |
19 21 24
|
3jca |
|
26 |
23 17 18
|
mulassd |
|
27 |
18
|
mulid2d |
|
28 |
25 26 27
|
jca32 |
|
29 |
28
|
ralrimivvva |
|
30 |
29
|
rgen |
|
31 |
2 5
|
sseqtri |
|
32 |
31
|
a1i |
|
33 |
3 32
|
srabase |
|
34 |
33
|
mptru |
|
35 |
5 34
|
eqtri |
|
36 |
|
cnfldadd |
|
37 |
3 32
|
sraaddg |
|
38 |
37
|
mptru |
|
39 |
36 38
|
eqtri |
|
40 |
|
cnfldmul |
|
41 |
3 32
|
sravsca |
|
42 |
41
|
mptru |
|
43 |
40 42
|
eqtri |
|
44 |
|
df-refld |
|
45 |
3 32
|
srasca |
|
46 |
45
|
mptru |
|
47 |
44 46
|
eqtri |
|
48 |
|
rebase |
|
49 |
|
replusg |
|
50 |
|
remulr |
|
51 |
|
re1r |
|
52 |
35 39 43 47 48 49 50 51
|
islmod |
|
53 |
9 15 30 52
|
mpbir3an |
|
54 |
47
|
islvec |
|
55 |
53 13 54
|
mpbir2an |
|