Metamath Proof Explorer


Theorem ccfldsrarelvec

Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion ccfldsrarelvec subringAlg fld LVec

Proof

Step Hyp Ref Expression
1 cnring fld Ring
2 ax-resscn
3 eqidd subringAlg fld = subringAlg fld
4 3 mptru subringAlg fld = subringAlg fld
5 cnfldbas = Base fld
6 4 5 sraring fld Ring subringAlg fld Ring
7 1 2 6 mp2an subringAlg fld Ring
8 ringgrp subringAlg fld Ring subringAlg fld Grp
9 7 8 ax-mp subringAlg fld Grp
10 refld fld Field
11 isfld fld Field fld DivRing fld CRing
12 10 11 mpbi fld DivRing fld CRing
13 12 simpli fld DivRing
14 drngring fld DivRing fld Ring
15 13 14 ax-mp fld Ring
16 simpr1 a b x y b
17 16 recnd a b x y b
18 simpr3 a b x y y
19 17 18 mulcld a b x y b y
20 simpr2 a b x y x
21 17 18 20 adddid a b x y b y + x = b y + b x
22 simpl a b x y a
23 22 recnd a b x y a
24 23 17 18 adddird a b x y a + b y = a y + b y
25 19 21 24 3jca a b x y b y b y + x = b y + b x a + b y = a y + b y
26 23 17 18 mulassd a b x y a b y = a b y
27 18 mulid2d a b x y 1 y = y
28 25 26 27 jca32 a b x y b y b y + x = b y + b x a + b y = a y + b y a b y = a b y 1 y = y
29 28 ralrimivvva a b x y b y b y + x = b y + b x a + b y = a y + b y a b y = a b y 1 y = y
30 29 rgen a b x y b y b y + x = b y + b x a + b y = a y + b y a b y = a b y 1 y = y
31 2 5 sseqtri Base fld
32 31 a1i Base fld
33 3 32 srabase Base fld = Base subringAlg fld
34 33 mptru Base fld = Base subringAlg fld
35 5 34 eqtri = Base subringAlg fld
36 cnfldadd + = + fld
37 3 32 sraaddg + fld = + subringAlg fld
38 37 mptru + fld = + subringAlg fld
39 36 38 eqtri + = + subringAlg fld
40 cnfldmul × = fld
41 3 32 sravsca fld = subringAlg fld
42 41 mptru fld = subringAlg fld
43 40 42 eqtri × = subringAlg fld
44 df-refld fld = fld 𝑠
45 3 32 srasca fld 𝑠 = Scalar subringAlg fld
46 45 mptru fld 𝑠 = Scalar subringAlg fld
47 44 46 eqtri fld = Scalar subringAlg fld
48 rebase = Base fld
49 replusg + = + fld
50 remulr × = fld
51 re1r 1 = 1 fld
52 35 39 43 47 48 49 50 51 islmod subringAlg fld LMod subringAlg fld Grp fld Ring a b x y b y b y + x = b y + b x a + b y = a y + b y a b y = a b y 1 y = y
53 9 15 30 52 mpbir3an subringAlg fld LMod
54 47 islvec subringAlg fld LVec subringAlg fld LMod fld DivRing
55 53 13 54 mpbir2an subringAlg fld LVec