Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ccfldsrarelvec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | |
|
2 | ax-resscn | |
|
3 | eqidd | |
|
4 | 3 | mptru | |
5 | cnfldbas | |
|
6 | 4 5 | sraring | |
7 | 1 2 6 | mp2an | |
8 | ringgrp | |
|
9 | 7 8 | ax-mp | |
10 | refld | |
|
11 | isfld | |
|
12 | 10 11 | mpbi | |
13 | 12 | simpli | |
14 | drngring | |
|
15 | 13 14 | ax-mp | |
16 | simpr1 | |
|
17 | 16 | recnd | |
18 | simpr3 | |
|
19 | 17 18 | mulcld | |
20 | simpr2 | |
|
21 | 17 18 20 | adddid | |
22 | simpl | |
|
23 | 22 | recnd | |
24 | 23 17 18 | adddird | |
25 | 19 21 24 | 3jca | |
26 | 23 17 18 | mulassd | |
27 | 18 | mullidd | |
28 | 25 26 27 | jca32 | |
29 | 28 | ralrimivvva | |
30 | 29 | rgen | |
31 | 2 5 | sseqtri | |
32 | 31 | a1i | |
33 | 3 32 | srabase | |
34 | 33 | mptru | |
35 | 5 34 | eqtri | |
36 | cnfldadd | |
|
37 | 3 32 | sraaddg | |
38 | 37 | mptru | |
39 | 36 38 | eqtri | |
40 | cnfldmul | |
|
41 | 3 32 | sravsca | |
42 | 41 | mptru | |
43 | 40 42 | eqtri | |
44 | df-refld | |
|
45 | 3 32 | srasca | |
46 | 45 | mptru | |
47 | 44 46 | eqtri | |
48 | rebase | |
|
49 | replusg | |
|
50 | remulr | |
|
51 | re1r | |
|
52 | 35 39 43 47 48 49 50 51 | islmod | |
53 | 9 15 30 52 | mpbir3an | |
54 | 47 | islvec | |
55 | 53 13 54 | mpbir2an | |