Metamath Proof Explorer


Theorem ccfldsrarelvec

Description: The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion ccfldsrarelvec subringAlgfldLVec

Proof

Step Hyp Ref Expression
1 cnring fldRing
2 ax-resscn
3 eqidd subringAlgfld=subringAlgfld
4 3 mptru subringAlgfld=subringAlgfld
5 cnfldbas =Basefld
6 4 5 sraring fldRingsubringAlgfldRing
7 1 2 6 mp2an subringAlgfldRing
8 ringgrp subringAlgfldRingsubringAlgfldGrp
9 7 8 ax-mp subringAlgfldGrp
10 refld fldField
11 isfld fldFieldfldDivRingfldCRing
12 10 11 mpbi fldDivRingfldCRing
13 12 simpli fldDivRing
14 drngring fldDivRingfldRing
15 13 14 ax-mp fldRing
16 simpr1 abxyb
17 16 recnd abxyb
18 simpr3 abxyy
19 17 18 mulcld abxyby
20 simpr2 abxyx
21 17 18 20 adddid abxyby+x=by+bx
22 simpl abxya
23 22 recnd abxya
24 23 17 18 adddird abxya+by=ay+by
25 19 21 24 3jca abxybyby+x=by+bxa+by=ay+by
26 23 17 18 mulassd abxyaby=aby
27 18 mullidd abxy1y=y
28 25 26 27 jca32 abxybyby+x=by+bxa+by=ay+byaby=aby1y=y
29 28 ralrimivvva abxybyby+x=by+bxa+by=ay+byaby=aby1y=y
30 29 rgen abxybyby+x=by+bxa+by=ay+byaby=aby1y=y
31 2 5 sseqtri Basefld
32 31 a1i Basefld
33 3 32 srabase Basefld=BasesubringAlgfld
34 33 mptru Basefld=BasesubringAlgfld
35 5 34 eqtri =BasesubringAlgfld
36 cnfldadd +=+fld
37 3 32 sraaddg +fld=+subringAlgfld
38 37 mptru +fld=+subringAlgfld
39 36 38 eqtri +=+subringAlgfld
40 cnfldmul ×=fld
41 3 32 sravsca fld=subringAlgfld
42 41 mptru fld=subringAlgfld
43 40 42 eqtri ×=subringAlgfld
44 df-refld fld=fld𝑠
45 3 32 srasca fld𝑠=ScalarsubringAlgfld
46 45 mptru fld𝑠=ScalarsubringAlgfld
47 44 46 eqtri fld=ScalarsubringAlgfld
48 rebase =Basefld
49 replusg +=+fld
50 remulr ×=fld
51 re1r 1=1fld
52 35 39 43 47 48 49 50 51 islmod subringAlgfldLModsubringAlgfldGrpfldRingabxybyby+x=by+bxa+by=ay+byaby=aby1y=y
53 9 15 30 52 mpbir3an subringAlgfldLMod
54 47 islvec subringAlgfldLVecsubringAlgfldLModfldDivRing
55 53 13 54 mpbir2an subringAlgfldLVec