Metamath Proof Explorer


Theorem re1r

Description: The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion re1r 1=1fld

Proof

Step Hyp Ref Expression
1 resubdrg SubRingfldfldDivRing
2 1 simpli SubRingfld
3 df-refld fld=fld𝑠
4 cnfld1 1=1fld
5 3 4 subrg1 SubRingfld1=1fld
6 2 5 ax-mp 1=1fld