Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
⊢ ℂfld ∈ Ring |
2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
3 |
|
eqidd |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
4 |
3
|
mptru |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) |
5 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
6 |
4 5
|
sraring |
⊢ ( ( ℂfld ∈ Ring ∧ ℝ ⊆ ℂ ) → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Ring ) |
7 |
1 2 6
|
mp2an |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Ring |
8 |
|
ringgrp |
⊢ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Ring → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Grp ) |
9 |
7 8
|
ax-mp |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Grp |
10 |
|
refld |
⊢ ℝfld ∈ Field |
11 |
|
isfld |
⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) |
12 |
10 11
|
mpbi |
⊢ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) |
13 |
12
|
simpli |
⊢ ℝfld ∈ DivRing |
14 |
|
drngring |
⊢ ( ℝfld ∈ DivRing → ℝfld ∈ Ring ) |
15 |
13 14
|
ax-mp |
⊢ ℝfld ∈ Ring |
16 |
|
simpr1 |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑏 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑏 ∈ ℂ ) |
18 |
|
simpr3 |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑦 ∈ ℂ ) |
19 |
17 18
|
mulcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑏 · 𝑦 ) ∈ ℂ ) |
20 |
|
simpr2 |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑥 ∈ ℂ ) |
21 |
17 18 20
|
adddid |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑎 ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → 𝑎 ∈ ℂ ) |
24 |
23 17 18
|
adddird |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) |
25 |
19 21 24
|
3jca |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑏 · 𝑦 ) ∈ ℂ ∧ ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ) |
26 |
23 17 18
|
mulassd |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( 𝑎 · 𝑏 ) · 𝑦 ) = ( 𝑎 · ( 𝑏 · 𝑦 ) ) ) |
27 |
18
|
mulid2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
28 |
25 26 27
|
jca32 |
⊢ ( ( 𝑎 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( 𝑏 · 𝑦 ) ∈ ℂ ∧ ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ∧ ( ( ( 𝑎 · 𝑏 ) · 𝑦 ) = ( 𝑎 · ( 𝑏 · 𝑦 ) ) ∧ ( 1 · 𝑦 ) = 𝑦 ) ) ) |
29 |
28
|
ralrimivvva |
⊢ ( 𝑎 ∈ ℝ → ∀ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝑏 · 𝑦 ) ∈ ℂ ∧ ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ∧ ( ( ( 𝑎 · 𝑏 ) · 𝑦 ) = ( 𝑎 · ( 𝑏 · 𝑦 ) ) ∧ ( 1 · 𝑦 ) = 𝑦 ) ) ) |
30 |
29
|
rgen |
⊢ ∀ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝑏 · 𝑦 ) ∈ ℂ ∧ ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ∧ ( ( ( 𝑎 · 𝑏 ) · 𝑦 ) = ( 𝑎 · ( 𝑏 · 𝑦 ) ) ∧ ( 1 · 𝑦 ) = 𝑦 ) ) |
31 |
2 5
|
sseqtri |
⊢ ℝ ⊆ ( Base ‘ ℂfld ) |
32 |
31
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℂfld ) ) |
33 |
3 32
|
srabase |
⊢ ( ⊤ → ( Base ‘ ℂfld ) = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
34 |
33
|
mptru |
⊢ ( Base ‘ ℂfld ) = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
35 |
5 34
|
eqtri |
⊢ ℂ = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
36 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
37 |
3 32
|
sraaddg |
⊢ ( ⊤ → ( +g ‘ ℂfld ) = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
38 |
37
|
mptru |
⊢ ( +g ‘ ℂfld ) = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
39 |
36 38
|
eqtri |
⊢ + = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
40 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
41 |
3 32
|
sravsca |
⊢ ( ⊤ → ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
42 |
41
|
mptru |
⊢ ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
43 |
40 42
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
44 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
45 |
3 32
|
srasca |
⊢ ( ⊤ → ( ℂfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
46 |
45
|
mptru |
⊢ ( ℂfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
47 |
44 46
|
eqtri |
⊢ ℝfld = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
48 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
49 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
50 |
|
remulr |
⊢ · = ( .r ‘ ℝfld ) |
51 |
|
re1r |
⊢ 1 = ( 1r ‘ ℝfld ) |
52 |
35 39 43 47 48 49 50 51
|
islmod |
⊢ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ↔ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ Grp ∧ ℝfld ∈ Ring ∧ ∀ 𝑎 ∈ ℝ ∀ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( 𝑏 · 𝑦 ) ∈ ℂ ∧ ( 𝑏 · ( 𝑦 + 𝑥 ) ) = ( ( 𝑏 · 𝑦 ) + ( 𝑏 · 𝑥 ) ) ∧ ( ( 𝑎 + 𝑏 ) · 𝑦 ) = ( ( 𝑎 · 𝑦 ) + ( 𝑏 · 𝑦 ) ) ) ∧ ( ( ( 𝑎 · 𝑏 ) · 𝑦 ) = ( 𝑎 · ( 𝑏 · 𝑦 ) ) ∧ ( 1 · 𝑦 ) = 𝑦 ) ) ) ) |
53 |
9 15 30 52
|
mpbir3an |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod |
54 |
47
|
islvec |
⊢ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec ↔ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ∧ ℝfld ∈ DivRing ) ) |
55 |
53 13 54
|
mpbir2an |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec |