Step |
Hyp |
Ref |
Expression |
1 |
|
ccfldextrr |
⊢ ℂfld /FldExt ℝfld |
2 |
|
extdgval |
⊢ ( ℂfld /FldExt ℝfld → ( ℂfld [:] ℝfld ) = ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ( Base ‘ ℝfld ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ℂfld [:] ℝfld ) = ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ( Base ‘ ℝfld ) ) ) |
4 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
5 |
4
|
fveq2i |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ( Base ‘ ℝfld ) ) |
6 |
5
|
fveq2i |
⊢ ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ( Base ‘ ℝfld ) ) ) |
7 |
|
ccfldsrarelvec |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec |
8 |
|
df-pr |
⊢ { 1 , i } = ( { 1 } ∪ { i } ) |
9 |
|
eqid |
⊢ ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
10 |
|
eqidd |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
11 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
12 |
11
|
a1i |
⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
13 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
14 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
15 |
13 14
|
sseqtri |
⊢ ℝ ⊆ ( Base ‘ ℂfld ) |
16 |
15
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ( Base ‘ ℂfld ) ) |
17 |
10 12 16
|
sralmod0 |
⊢ ( ⊤ → 0 = ( 0g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
18 |
17
|
mptru |
⊢ 0 = ( 0g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
19 |
7
|
a1i |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec ) |
20 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
21 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
22 |
10 16
|
srabase |
⊢ ( ⊤ → ( Base ‘ ℂfld ) = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
23 |
22
|
mptru |
⊢ ( Base ‘ ℂfld ) = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
24 |
14 23
|
eqtri |
⊢ ℂ = ( Base ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
25 |
24 18
|
lindssn |
⊢ ( ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec ∧ 1 ∈ ℂ ∧ 1 ≠ 0 ) → { 1 } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
26 |
7 20 21 25
|
mp3an |
⊢ { 1 } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
27 |
26
|
a1i |
⊢ ( ⊤ → { 1 } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
28 |
|
ax-icn |
⊢ i ∈ ℂ |
29 |
|
ine0 |
⊢ i ≠ 0 |
30 |
24 18
|
lindssn |
⊢ ( ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec ∧ i ∈ ℂ ∧ i ≠ 0 ) → { i } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
31 |
7 28 29 30
|
mp3an |
⊢ { i } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
32 |
31
|
a1i |
⊢ ( ⊤ → { i } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
33 |
|
lveclmod |
⊢ ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ) |
34 |
7 33
|
ax-mp |
⊢ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod |
35 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
36 |
10 16
|
srasca |
⊢ ( ⊤ → ( ℂfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
37 |
36
|
mptru |
⊢ ( ℂfld ↾s ℝ ) = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
38 |
35 37
|
eqtri |
⊢ ℝfld = ( Scalar ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
39 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
40 |
10 16
|
sravsca |
⊢ ( ⊤ → ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
41 |
40
|
mptru |
⊢ ( .r ‘ ℂfld ) = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
42 |
39 41
|
eqtri |
⊢ · = ( ·𝑠 ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
43 |
38 4 24 42 9
|
lspsnel |
⊢ ( ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ∧ 1 ∈ ℂ ) → ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ↔ ∃ 𝑥 ∈ ℝ 𝑧 = ( 𝑥 · 1 ) ) ) |
44 |
34 20 43
|
mp2an |
⊢ ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ↔ ∃ 𝑥 ∈ ℝ 𝑧 = ( 𝑥 · 1 ) ) |
45 |
38 4 24 42 9
|
lspsnel |
⊢ ( ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ∧ i ∈ ℂ ) → ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ↔ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑦 · i ) ) ) |
46 |
34 28 45
|
mp2an |
⊢ ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ↔ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑦 · i ) ) |
47 |
44 46
|
anbi12i |
⊢ ( ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∧ 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) ↔ ( ∃ 𝑥 ∈ ℝ 𝑧 = ( 𝑥 · 1 ) ∧ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑦 · i ) ) ) |
48 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ↔ ( ∃ 𝑥 ∈ ℝ 𝑧 = ( 𝑥 · 1 ) ∧ ∃ 𝑦 ∈ ℝ 𝑧 = ( 𝑦 · i ) ) ) |
49 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 = ( 𝑥 · 1 ) ) |
50 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑥 ∈ ℝ ) |
51 |
50
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑥 ∈ ℂ ) |
52 |
51
|
mulid1d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
53 |
49 52
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 = 𝑥 ) |
54 |
53
|
negeqd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - 𝑧 = - 𝑥 ) |
55 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 = ( 𝑦 · i ) ) |
56 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑦 ∈ ℝ ) |
57 |
56
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑦 ∈ ℂ ) |
58 |
28
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → i ∈ ℂ ) |
59 |
57 58
|
mulcomd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( 𝑦 · i ) = ( i · 𝑦 ) ) |
60 |
55 59
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 = ( i · 𝑦 ) ) |
61 |
54 60
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( - 𝑧 + 𝑧 ) = ( - 𝑥 + ( i · 𝑦 ) ) ) |
62 |
53 51
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 ∈ ℂ ) |
63 |
62
|
subidd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( 𝑧 − 𝑧 ) = 0 ) |
64 |
63
|
negeqd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - ( 𝑧 − 𝑧 ) = - 0 ) |
65 |
62 62
|
negsubdid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - ( 𝑧 − 𝑧 ) = ( - 𝑧 + 𝑧 ) ) |
66 |
|
neg0 |
⊢ - 0 = 0 |
67 |
66
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - 0 = 0 ) |
68 |
64 65 67
|
3eqtr3d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( - 𝑧 + 𝑧 ) = 0 ) |
69 |
61 68
|
eqtr3d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( - 𝑥 + ( i · 𝑦 ) ) = 0 ) |
70 |
50
|
renegcld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - 𝑥 ∈ ℝ ) |
71 |
|
creq0 |
⊢ ( ( - 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( - 𝑥 = 0 ∧ 𝑦 = 0 ) ↔ ( - 𝑥 + ( i · 𝑦 ) ) = 0 ) ) |
72 |
70 56 71
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( ( - 𝑥 = 0 ∧ 𝑦 = 0 ) ↔ ( - 𝑥 + ( i · 𝑦 ) ) = 0 ) ) |
73 |
69 72
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → ( - 𝑥 = 0 ∧ 𝑦 = 0 ) ) |
74 |
73
|
simpld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - 𝑥 = 0 ) |
75 |
51 74
|
negcon1ad |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → - 0 = 𝑥 ) |
76 |
53 75 67
|
3eqtr2d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) → 𝑧 = 0 ) |
77 |
76
|
ex |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) → 𝑧 = 0 ) ) |
78 |
77
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) → 𝑧 = 0 ) |
79 |
|
0red |
⊢ ( 𝑧 = 0 → 0 ∈ ℝ ) |
80 |
|
simpr |
⊢ ( ( 𝑧 = 0 ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
81 |
80
|
oveq1d |
⊢ ( ( 𝑧 = 0 ∧ 𝑥 = 0 ) → ( 𝑥 · 1 ) = ( 0 · 1 ) ) |
82 |
81
|
eqeq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑥 = 0 ) → ( 𝑧 = ( 𝑥 · 1 ) ↔ 𝑧 = ( 0 · 1 ) ) ) |
83 |
82
|
anbi1d |
⊢ ( ( 𝑧 = 0 ∧ 𝑥 = 0 ) → ( ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ↔ ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) ) |
84 |
83
|
rexbidv |
⊢ ( ( 𝑧 = 0 ∧ 𝑥 = 0 ) → ( ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ↔ ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) ) |
85 |
|
simpr |
⊢ ( ( 𝑧 = 0 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
86 |
85
|
oveq1d |
⊢ ( ( 𝑧 = 0 ∧ 𝑦 = 0 ) → ( 𝑦 · i ) = ( 0 · i ) ) |
87 |
86
|
eqeq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑦 = 0 ) → ( 𝑧 = ( 𝑦 · i ) ↔ 𝑧 = ( 0 · i ) ) ) |
88 |
87
|
anbi2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑦 = 0 ) → ( ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ↔ ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 0 · i ) ) ) ) |
89 |
20
|
mul02i |
⊢ ( 0 · 1 ) = 0 |
90 |
89
|
eqeq2i |
⊢ ( 𝑧 = ( 0 · 1 ) ↔ 𝑧 = 0 ) |
91 |
90
|
biimpri |
⊢ ( 𝑧 = 0 → 𝑧 = ( 0 · 1 ) ) |
92 |
28
|
mul02i |
⊢ ( 0 · i ) = 0 |
93 |
92
|
eqeq2i |
⊢ ( 𝑧 = ( 0 · i ) ↔ 𝑧 = 0 ) |
94 |
93
|
biimpri |
⊢ ( 𝑧 = 0 → 𝑧 = ( 0 · i ) ) |
95 |
91 94
|
jca |
⊢ ( 𝑧 = 0 → ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 0 · i ) ) ) |
96 |
79 88 95
|
rspcedvd |
⊢ ( 𝑧 = 0 → ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 0 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) |
97 |
79 84 96
|
rspcedvd |
⊢ ( 𝑧 = 0 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ) |
98 |
78 97
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( 𝑧 = ( 𝑥 · 1 ) ∧ 𝑧 = ( 𝑦 · i ) ) ↔ 𝑧 = 0 ) |
99 |
47 48 98
|
3bitr2i |
⊢ ( ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∧ 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) ↔ 𝑧 = 0 ) |
100 |
|
elin |
⊢ ( 𝑧 ∈ ( ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∩ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) ↔ ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∧ 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) ) |
101 |
|
velsn |
⊢ ( 𝑧 ∈ { 0 } ↔ 𝑧 = 0 ) |
102 |
99 100 101
|
3bitr4i |
⊢ ( 𝑧 ∈ ( ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∩ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) ↔ 𝑧 ∈ { 0 } ) |
103 |
102
|
eqriv |
⊢ ( ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∩ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) = { 0 } |
104 |
103
|
a1i |
⊢ ( ⊤ → ( ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 } ) ∩ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { i } ) ) = { 0 } ) |
105 |
9 18 19 27 32 104
|
lindsun |
⊢ ( ⊤ → ( { 1 } ∪ { i } ) ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
106 |
105
|
mptru |
⊢ ( { 1 } ∪ { i } ) ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
107 |
8 106
|
eqeltri |
⊢ { 1 , i } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
108 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
109 |
10 16
|
sraaddg |
⊢ ( ⊤ → ( +g ‘ ℂfld ) = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) |
110 |
109
|
mptru |
⊢ ( +g ‘ ℂfld ) = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
111 |
108 110
|
eqtri |
⊢ + = ( +g ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
112 |
34
|
a1i |
⊢ ( ⊤ → ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LMod ) |
113 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
114 |
28
|
a1i |
⊢ ( ⊤ → i ∈ ℂ ) |
115 |
24 111 38 4 42 9 112 113 114
|
lspprel |
⊢ ( ⊤ → ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 , i } ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ) ) |
116 |
115
|
mptru |
⊢ ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 , i } ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ) |
117 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
118 |
117
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
119 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
120 |
118 119
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 1 ) ∈ ℂ ) |
121 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
122 |
121
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
123 |
28
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → i ∈ ℂ ) |
124 |
122 123
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · i ) ∈ ℂ ) |
125 |
120 124
|
addcld |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ∈ ℂ ) |
126 |
|
eleq1 |
⊢ ( 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) → ( 𝑧 ∈ ℂ ↔ ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ∈ ℂ ) ) |
127 |
125 126
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) → 𝑧 ∈ ℂ ) ) |
128 |
127
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) → 𝑧 ∈ ℂ ) |
129 |
|
recl |
⊢ ( 𝑧 ∈ ℂ → ( ℜ ‘ 𝑧 ) ∈ ℝ ) |
130 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 = ( ℜ ‘ 𝑧 ) ) → 𝑥 = ( ℜ ‘ 𝑧 ) ) |
131 |
130
|
oveq1d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 = ( ℜ ‘ 𝑧 ) ) → ( 𝑥 · 1 ) = ( ( ℜ ‘ 𝑧 ) · 1 ) ) |
132 |
131
|
oveq1d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 = ( ℜ ‘ 𝑧 ) ) → ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) ) |
133 |
132
|
eqeq2d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 = ( ℜ ‘ 𝑧 ) ) → ( 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ↔ 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) ) ) |
134 |
133
|
rexbidv |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 = ( ℜ ‘ 𝑧 ) ) → ( ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ↔ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) ) ) |
135 |
|
imcl |
⊢ ( 𝑧 ∈ ℂ → ( ℑ ‘ 𝑧 ) ∈ ℝ ) |
136 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 = ( ℑ ‘ 𝑧 ) ) → 𝑦 = ( ℑ ‘ 𝑧 ) ) |
137 |
136
|
oveq1d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 = ( ℑ ‘ 𝑧 ) ) → ( 𝑦 · i ) = ( ( ℑ ‘ 𝑧 ) · i ) ) |
138 |
137
|
oveq2d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 = ( ℑ ‘ 𝑧 ) ) → ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( ( ℑ ‘ 𝑧 ) · i ) ) ) |
139 |
138
|
eqeq2d |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 = ( ℑ ‘ 𝑧 ) ) → ( 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) ↔ 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( ( ℑ ‘ 𝑧 ) · i ) ) ) ) |
140 |
|
replim |
⊢ ( 𝑧 ∈ ℂ → 𝑧 = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
141 |
129
|
recnd |
⊢ ( 𝑧 ∈ ℂ → ( ℜ ‘ 𝑧 ) ∈ ℂ ) |
142 |
141
|
mulid1d |
⊢ ( 𝑧 ∈ ℂ → ( ( ℜ ‘ 𝑧 ) · 1 ) = ( ℜ ‘ 𝑧 ) ) |
143 |
135
|
recnd |
⊢ ( 𝑧 ∈ ℂ → ( ℑ ‘ 𝑧 ) ∈ ℂ ) |
144 |
28
|
a1i |
⊢ ( 𝑧 ∈ ℂ → i ∈ ℂ ) |
145 |
143 144
|
mulcomd |
⊢ ( 𝑧 ∈ ℂ → ( ( ℑ ‘ 𝑧 ) · i ) = ( i · ( ℑ ‘ 𝑧 ) ) ) |
146 |
142 145
|
oveq12d |
⊢ ( 𝑧 ∈ ℂ → ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( ( ℑ ‘ 𝑧 ) · i ) ) = ( ( ℜ ‘ 𝑧 ) + ( i · ( ℑ ‘ 𝑧 ) ) ) ) |
147 |
140 146
|
eqtr4d |
⊢ ( 𝑧 ∈ ℂ → 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( ( ℑ ‘ 𝑧 ) · i ) ) ) |
148 |
135 139 147
|
rspcedvd |
⊢ ( 𝑧 ∈ ℂ → ∃ 𝑦 ∈ ℝ 𝑧 = ( ( ( ℜ ‘ 𝑧 ) · 1 ) + ( 𝑦 · i ) ) ) |
149 |
129 134 148
|
rspcedvd |
⊢ ( 𝑧 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ) |
150 |
128 149
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑧 = ( ( 𝑥 · 1 ) + ( 𝑦 · i ) ) ↔ 𝑧 ∈ ℂ ) |
151 |
116 150
|
bitri |
⊢ ( 𝑧 ∈ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 , i } ) ↔ 𝑧 ∈ ℂ ) |
152 |
151
|
eqriv |
⊢ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 , i } ) = ℂ |
153 |
|
eqid |
⊢ ( LBasis ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( LBasis ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
154 |
24 153 9
|
islbs4 |
⊢ ( { 1 , i } ∈ ( LBasis ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ↔ ( { 1 , i } ∈ ( LIndS ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ∧ ( ( LSpan ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ‘ { 1 , i } ) = ℂ ) ) |
155 |
107 152 154
|
mpbir2an |
⊢ { 1 , i } ∈ ( LBasis ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) |
156 |
153
|
dimval |
⊢ ( ( ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ∈ LVec ∧ { 1 , i } ∈ ( LBasis ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) ) → ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( ♯ ‘ { 1 , i } ) ) |
157 |
7 155 156
|
mp2an |
⊢ ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = ( ♯ ‘ { 1 , i } ) |
158 |
|
1nei |
⊢ 1 ≠ i |
159 |
|
hashprg |
⊢ ( ( 1 ∈ ℂ ∧ i ∈ ℂ ) → ( 1 ≠ i ↔ ( ♯ ‘ { 1 , i } ) = 2 ) ) |
160 |
20 28 159
|
mp2an |
⊢ ( 1 ≠ i ↔ ( ♯ ‘ { 1 , i } ) = 2 ) |
161 |
158 160
|
mpbi |
⊢ ( ♯ ‘ { 1 , i } ) = 2 |
162 |
157 161
|
eqtri |
⊢ ( dim ‘ ( ( subringAlg ‘ ℂfld ) ‘ ℝ ) ) = 2 |
163 |
3 6 162
|
3eqtr2i |
⊢ ( ℂfld [:] ℝfld ) = 2 |