| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lindsun.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 2 |
|
lindsun.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lindsun.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 4 |
|
lindsun.u |
⊢ ( 𝜑 → 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) |
| 5 |
|
lindsun.v |
⊢ ( 𝜑 → 𝑉 ∈ ( LIndS ‘ 𝑊 ) ) |
| 6 |
|
lindsun.2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = { 0 } ) |
| 7 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 10 |
9
|
linds1 |
⊢ ( 𝑈 ∈ ( LIndS ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 |
9
|
linds1 |
⊢ ( 𝑉 ∈ ( LIndS ‘ 𝑊 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
| 14 |
11 13
|
unssd |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 15 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
| 16 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) |
| 17 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → 𝑉 ∈ ( LIndS ‘ 𝑊 ) ) |
| 18 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = { 0 } ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → 𝑐 ∈ 𝑈 ) |
| 22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 23 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 24 |
1 2 15 16 17 18 19 20 21 22 23
|
lindsunlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑈 ) → ⊥ ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) ∧ 𝑐 ∈ 𝑈 ) → ⊥ ) |
| 26 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
| 27 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑉 ∈ ( LIndS ‘ 𝑊 ) ) |
| 28 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) |
| 29 |
|
incom |
⊢ ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = ( ( 𝑁 ‘ 𝑉 ) ∩ ( 𝑁 ‘ 𝑈 ) ) |
| 30 |
29 6
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑉 ) ∩ ( 𝑁 ‘ 𝑈 ) ) = { 0 } ) |
| 31 |
30
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑉 ) ∩ ( 𝑁 ‘ 𝑈 ) ) = { 0 } ) |
| 32 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
| 33 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 34 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 35 |
|
uncom |
⊢ ( 𝑈 ∪ 𝑉 ) = ( 𝑉 ∪ 𝑈 ) |
| 36 |
35
|
difeq1i |
⊢ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) = ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝑐 } ) |
| 37 |
36
|
fveq2i |
⊢ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) = ( 𝑁 ‘ ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝑐 } ) ) |
| 38 |
34 37
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝑐 } ) ) ) |
| 39 |
1 2 26 27 28 31 19 20 32 33 38
|
lindsunlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ 𝑉 ) → ⊥ ) |
| 40 |
39
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) ∧ 𝑐 ∈ 𝑉 ) → ⊥ ) |
| 41 |
|
elun |
⊢ ( 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ↔ ( 𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉 ) ) |
| 42 |
41
|
biimpi |
⊢ ( 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) → ( 𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) → ( 𝑐 ∈ 𝑈 ∨ 𝑐 ∈ 𝑉 ) ) |
| 44 |
25 40 43
|
mpjaodan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) → ⊥ ) |
| 45 |
44
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) → ⊥ ) |
| 46 |
45
|
inegd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 47 |
46
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 48 |
47
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ∧ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 49 |
48
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) |
| 50 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 51 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 52 |
9 50 1 51 20 19
|
islinds2 |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑈 ∪ 𝑉 ) ∈ ( LIndS ‘ 𝑊 ) ↔ ( ( 𝑈 ∪ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ) ) |
| 53 |
52
|
biimpar |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑈 ∪ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑐 ∈ ( 𝑈 ∪ 𝑉 ) ∀ 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝑐 } ) ) ) ) → ( 𝑈 ∪ 𝑉 ) ∈ ( LIndS ‘ 𝑊 ) ) |
| 54 |
8 14 49 53
|
syl12anc |
⊢ ( 𝜑 → ( 𝑈 ∪ 𝑉 ) ∈ ( LIndS ‘ 𝑊 ) ) |