Description: Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindsun.n | |
|
lindsun.0 | |
||
lindsun.w | |
||
lindsun.u | |
||
lindsun.v | |
||
lindsun.2 | |
||
Assertion | lindsun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindsun.n | |
|
2 | lindsun.0 | |
|
3 | lindsun.w | |
|
4 | lindsun.u | |
|
5 | lindsun.v | |
|
6 | lindsun.2 | |
|
7 | lveclmod | |
|
8 | 3 7 | syl | |
9 | eqid | |
|
10 | 9 | linds1 | |
11 | 4 10 | syl | |
12 | 9 | linds1 | |
13 | 5 12 | syl | |
14 | 11 13 | unssd | |
15 | 3 | ad3antrrr | |
16 | 4 | ad3antrrr | |
17 | 5 | ad3antrrr | |
18 | 6 | ad3antrrr | |
19 | eqid | |
|
20 | eqid | |
|
21 | simpr | |
|
22 | simpllr | |
|
23 | simplr | |
|
24 | 1 2 15 16 17 18 19 20 21 22 23 | lindsunlem | |
25 | 24 | adantlr | |
26 | 3 | ad3antrrr | |
27 | 5 | ad3antrrr | |
28 | 4 | ad3antrrr | |
29 | incom | |
|
30 | 29 6 | eqtr3id | |
31 | 30 | ad3antrrr | |
32 | simpr | |
|
33 | simpllr | |
|
34 | simplr | |
|
35 | uncom | |
|
36 | 35 | difeq1i | |
37 | 36 | fveq2i | |
38 | 34 37 | eleqtrdi | |
39 | 1 2 26 27 28 31 19 20 32 33 38 | lindsunlem | |
40 | 39 | adantlr | |
41 | elun | |
|
42 | 41 | biimpi | |
43 | 42 | adantl | |
44 | 25 40 43 | mpjaodan | |
45 | 44 | an32s | |
46 | 45 | inegd | |
47 | 46 | an32s | |
48 | 47 | anasss | |
49 | 48 | ralrimivva | |
50 | eqid | |
|
51 | eqid | |
|
52 | 9 50 1 51 20 19 | islinds2 | |
53 | 52 | biimpar | |
54 | 8 14 49 53 | syl12anc | |