Metamath Proof Explorer


Theorem lindsun

Description: Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023)

Ref Expression
Hypotheses lindsun.n N=LSpanW
lindsun.0 0˙=0W
lindsun.w φWLVec
lindsun.u φULIndSW
lindsun.v φVLIndSW
lindsun.2 φNUNV=0˙
Assertion lindsun φUVLIndSW

Proof

Step Hyp Ref Expression
1 lindsun.n N=LSpanW
2 lindsun.0 0˙=0W
3 lindsun.w φWLVec
4 lindsun.u φULIndSW
5 lindsun.v φVLIndSW
6 lindsun.2 φNUNV=0˙
7 lveclmod WLVecWLMod
8 3 7 syl φWLMod
9 eqid BaseW=BaseW
10 9 linds1 ULIndSWUBaseW
11 4 10 syl φUBaseW
12 9 linds1 VLIndSWVBaseW
13 5 12 syl φVBaseW
14 11 13 unssd φUVBaseW
15 3 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccUWLVec
16 4 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccUULIndSW
17 5 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccUVLIndSW
18 6 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccUNUNV=0˙
19 eqid 0ScalarW=0ScalarW
20 eqid BaseScalarW=BaseScalarW
21 simpr φkBaseScalarW0ScalarWkWcNUVccUcU
22 simpllr φkBaseScalarW0ScalarWkWcNUVccUkBaseScalarW0ScalarW
23 simplr φkBaseScalarW0ScalarWkWcNUVccUkWcNUVc
24 1 2 15 16 17 18 19 20 21 22 23 lindsunlem φkBaseScalarW0ScalarWkWcNUVccU
25 24 adantlr φkBaseScalarW0ScalarWkWcNUVccUVcU
26 3 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccVWLVec
27 5 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccVVLIndSW
28 4 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccVULIndSW
29 incom NUNV=NVNU
30 29 6 eqtr3id φNVNU=0˙
31 30 ad3antrrr φkBaseScalarW0ScalarWkWcNUVccVNVNU=0˙
32 simpr φkBaseScalarW0ScalarWkWcNUVccVcV
33 simpllr φkBaseScalarW0ScalarWkWcNUVccVkBaseScalarW0ScalarW
34 simplr φkBaseScalarW0ScalarWkWcNUVccVkWcNUVc
35 uncom UV=VU
36 35 difeq1i UVc=VUc
37 36 fveq2i NUVc=NVUc
38 34 37 eleqtrdi φkBaseScalarW0ScalarWkWcNUVccVkWcNVUc
39 1 2 26 27 28 31 19 20 32 33 38 lindsunlem φkBaseScalarW0ScalarWkWcNUVccV
40 39 adantlr φkBaseScalarW0ScalarWkWcNUVccUVcV
41 elun cUVcUcV
42 41 biimpi cUVcUcV
43 42 adantl φkBaseScalarW0ScalarWkWcNUVccUVcUcV
44 25 40 43 mpjaodan φkBaseScalarW0ScalarWkWcNUVccUV
45 44 an32s φkBaseScalarW0ScalarWcUVkWcNUVc
46 45 inegd φkBaseScalarW0ScalarWcUV¬kWcNUVc
47 46 an32s φcUVkBaseScalarW0ScalarW¬kWcNUVc
48 47 anasss φcUVkBaseScalarW0ScalarW¬kWcNUVc
49 48 ralrimivva φcUVkBaseScalarW0ScalarW¬kWcNUVc
50 eqid W=W
51 eqid ScalarW=ScalarW
52 9 50 1 51 20 19 islinds2 WLModUVLIndSWUVBaseWcUVkBaseScalarW0ScalarW¬kWcNUVc
53 52 biimpar WLModUVBaseWcUVkBaseScalarW0ScalarW¬kWcNUVcUVLIndSW
54 8 14 49 53 syl12anc φUVLIndSW