Step |
Hyp |
Ref |
Expression |
1 |
|
lindsun.n |
|
2 |
|
lindsun.0 |
|
3 |
|
lindsun.w |
|
4 |
|
lindsun.u |
|
5 |
|
lindsun.v |
|
6 |
|
lindsun.2 |
|
7 |
|
lindsunlem.o |
|
8 |
|
lindsunlem.f |
|
9 |
|
lindsunlem.c |
|
10 |
|
lindsunlem.k |
|
11 |
|
lindsunlem.1 |
|
12 |
|
simpr |
|
13 |
|
lveclmod |
|
14 |
3 13
|
syl |
|
15 |
|
lmodgrp |
|
16 |
14 15
|
syl |
|
17 |
16
|
ad3antrrr |
|
18 |
|
lmodabl |
|
19 |
14 18
|
syl |
|
20 |
19
|
ad3antrrr |
|
21 |
|
eqid |
|
22 |
21
|
linds1 |
|
23 |
4 22
|
syl |
|
24 |
21 1
|
lspssv |
|
25 |
14 23 24
|
syl2anc |
|
26 |
25
|
ad3antrrr |
|
27 |
|
difssd |
|
28 |
21 1
|
lspss |
|
29 |
14 23 27 28
|
syl3anc |
|
30 |
29
|
ad3antrrr |
|
31 |
|
simpllr |
|
32 |
30 31
|
sseldd |
|
33 |
26 32
|
sseldd |
|
34 |
21
|
linds1 |
|
35 |
5 34
|
syl |
|
36 |
21 1
|
lspssv |
|
37 |
14 35 36
|
syl2anc |
|
38 |
37
|
ad3antrrr |
|
39 |
|
simplr |
|
40 |
38 39
|
sseldd |
|
41 |
|
eqid |
|
42 |
21 41
|
ablcom |
|
43 |
20 33 40 42
|
syl3anc |
|
44 |
12 43
|
eqtr2d |
|
45 |
10
|
eldifad |
|
46 |
23 9
|
sseldd |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
21 47 48 8
|
lmodvscl |
|
50 |
14 45 46 49
|
syl3anc |
|
51 |
50
|
ad3antrrr |
|
52 |
|
eqid |
|
53 |
21 41 52
|
grpsubadd |
|
54 |
53
|
biimpar |
|
55 |
54
|
an32s |
|
56 |
17 44 51 33 40 55
|
syl23anc |
|
57 |
14
|
ad3antrrr |
|
58 |
|
eqid |
|
59 |
21 58 1
|
lspcl |
|
60 |
14 23 59
|
syl2anc |
|
61 |
60
|
ad3antrrr |
|
62 |
45
|
ad3antrrr |
|
63 |
21 1
|
lspssid |
|
64 |
14 23 63
|
syl2anc |
|
65 |
64 9
|
sseldd |
|
66 |
65
|
ad3antrrr |
|
67 |
47 48 8 58
|
lssvscl |
|
68 |
57 61 62 66 67
|
syl22anc |
|
69 |
52 58
|
lssvsubcl |
|
70 |
57 61 68 32 69
|
syl22anc |
|
71 |
56 70
|
eqeltrrd |
|
72 |
71 39
|
elind |
|
73 |
6
|
ad3antrrr |
|
74 |
72 73
|
eleqtrd |
|
75 |
|
elsni |
|
76 |
74 75
|
syl |
|
77 |
76
|
oveq2d |
|
78 |
21 41 2
|
grprid |
|
79 |
17 33 78
|
syl2anc |
|
80 |
12 77 79
|
3eqtrd |
|
81 |
80 31
|
eqeltrd |
|
82 |
9
|
ad3antrrr |
|
83 |
10
|
ad3antrrr |
|
84 |
3
|
ad3antrrr |
|
85 |
4
|
ad3antrrr |
|
86 |
21 48 1 47 8 7
|
islinds2 |
|
87 |
86
|
simplbda |
|
88 |
84 85 87
|
syl2anc |
|
89 |
|
oveq2 |
|
90 |
|
sneq |
|
91 |
90
|
difeq2d |
|
92 |
91
|
fveq2d |
|
93 |
89 92
|
eleq12d |
|
94 |
93
|
notbid |
|
95 |
|
oveq1 |
|
96 |
95
|
eleq1d |
|
97 |
96
|
notbid |
|
98 |
94 97
|
rspc2va |
|
99 |
82 83 88 98
|
syl21anc |
|
100 |
81 99
|
pm2.21fal |
|
101 |
23
|
ssdifssd |
|
102 |
21 58 1
|
lspcl |
|
103 |
14 101 102
|
syl2anc |
|
104 |
58
|
lsssubg |
|
105 |
14 103 104
|
syl2anc |
|
106 |
21 58 1
|
lspcl |
|
107 |
14 35 106
|
syl2anc |
|
108 |
58
|
lsssubg |
|
109 |
14 107 108
|
syl2anc |
|
110 |
|
eqid |
|
111 |
21 1 110
|
lsmsp2 |
|
112 |
14 101 35 111
|
syl3anc |
|
113 |
65
|
adantr |
|
114 |
21 1
|
lspssid |
|
115 |
14 35 114
|
syl2anc |
|
116 |
115
|
sselda |
|
117 |
113 116
|
elind |
|
118 |
6
|
adantr |
|
119 |
117 118
|
eleqtrd |
|
120 |
|
elsni |
|
121 |
119 120
|
syl |
|
122 |
2
|
0nellinds |
|
123 |
3 4 122
|
syl2anc |
|
124 |
|
nelne2 |
|
125 |
9 123 124
|
syl2anc |
|
126 |
125
|
adantr |
|
127 |
126
|
neneqd |
|
128 |
121 127
|
pm2.65da |
|
129 |
|
disjsn |
|
130 |
128 129
|
sylibr |
|
131 |
|
undif4 |
|
132 |
130 131
|
syl |
|
133 |
|
uncom |
|
134 |
|
uncom |
|
135 |
134
|
difeq1i |
|
136 |
132 133 135
|
3eqtr4g |
|
137 |
136
|
fveq2d |
|
138 |
112 137
|
eqtrd |
|
139 |
11 138
|
eleqtrrd |
|
140 |
41 110
|
lsmelval |
|
141 |
140
|
biimpa |
|
142 |
105 109 139 141
|
syl21anc |
|
143 |
100 142
|
r19.29vva |
|