Step |
Hyp |
Ref |
Expression |
1 |
|
lindsun.n |
|- N = ( LSpan ` W ) |
2 |
|
lindsun.0 |
|- .0. = ( 0g ` W ) |
3 |
|
lindsun.w |
|- ( ph -> W e. LVec ) |
4 |
|
lindsun.u |
|- ( ph -> U e. ( LIndS ` W ) ) |
5 |
|
lindsun.v |
|- ( ph -> V e. ( LIndS ` W ) ) |
6 |
|
lindsun.2 |
|- ( ph -> ( ( N ` U ) i^i ( N ` V ) ) = { .0. } ) |
7 |
|
lindsunlem.o |
|- O = ( 0g ` ( Scalar ` W ) ) |
8 |
|
lindsunlem.f |
|- F = ( Base ` ( Scalar ` W ) ) |
9 |
|
lindsunlem.c |
|- ( ph -> C e. U ) |
10 |
|
lindsunlem.k |
|- ( ph -> K e. ( F \ { O } ) ) |
11 |
|
lindsunlem.1 |
|- ( ph -> ( K ( .s ` W ) C ) e. ( N ` ( ( U u. V ) \ { C } ) ) ) |
12 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) |
13 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
14 |
3 13
|
syl |
|- ( ph -> W e. LMod ) |
15 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
16 |
14 15
|
syl |
|- ( ph -> W e. Grp ) |
17 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> W e. Grp ) |
18 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
19 |
14 18
|
syl |
|- ( ph -> W e. Abel ) |
20 |
19
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> W e. Abel ) |
21 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
22 |
21
|
linds1 |
|- ( U e. ( LIndS ` W ) -> U C_ ( Base ` W ) ) |
23 |
4 22
|
syl |
|- ( ph -> U C_ ( Base ` W ) ) |
24 |
21 1
|
lspssv |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) ) -> ( N ` U ) C_ ( Base ` W ) ) |
25 |
14 23 24
|
syl2anc |
|- ( ph -> ( N ` U ) C_ ( Base ` W ) ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( N ` U ) C_ ( Base ` W ) ) |
27 |
|
difssd |
|- ( ph -> ( U \ { C } ) C_ U ) |
28 |
21 1
|
lspss |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) /\ ( U \ { C } ) C_ U ) -> ( N ` ( U \ { C } ) ) C_ ( N ` U ) ) |
29 |
14 23 27 28
|
syl3anc |
|- ( ph -> ( N ` ( U \ { C } ) ) C_ ( N ` U ) ) |
30 |
29
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( N ` ( U \ { C } ) ) C_ ( N ` U ) ) |
31 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> x e. ( N ` ( U \ { C } ) ) ) |
32 |
30 31
|
sseldd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> x e. ( N ` U ) ) |
33 |
26 32
|
sseldd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> x e. ( Base ` W ) ) |
34 |
21
|
linds1 |
|- ( V e. ( LIndS ` W ) -> V C_ ( Base ` W ) ) |
35 |
5 34
|
syl |
|- ( ph -> V C_ ( Base ` W ) ) |
36 |
21 1
|
lspssv |
|- ( ( W e. LMod /\ V C_ ( Base ` W ) ) -> ( N ` V ) C_ ( Base ` W ) ) |
37 |
14 35 36
|
syl2anc |
|- ( ph -> ( N ` V ) C_ ( Base ` W ) ) |
38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( N ` V ) C_ ( Base ` W ) ) |
39 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y e. ( N ` V ) ) |
40 |
38 39
|
sseldd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y e. ( Base ` W ) ) |
41 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
42 |
21 41
|
ablcom |
|- ( ( W e. Abel /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) -> ( x ( +g ` W ) y ) = ( y ( +g ` W ) x ) ) |
43 |
20 33 40 42
|
syl3anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( x ( +g ` W ) y ) = ( y ( +g ` W ) x ) ) |
44 |
12 43
|
eqtr2d |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( y ( +g ` W ) x ) = ( K ( .s ` W ) C ) ) |
45 |
10
|
eldifad |
|- ( ph -> K e. F ) |
46 |
23 9
|
sseldd |
|- ( ph -> C e. ( Base ` W ) ) |
47 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
48 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
49 |
21 47 48 8
|
lmodvscl |
|- ( ( W e. LMod /\ K e. F /\ C e. ( Base ` W ) ) -> ( K ( .s ` W ) C ) e. ( Base ` W ) ) |
50 |
14 45 46 49
|
syl3anc |
|- ( ph -> ( K ( .s ` W ) C ) e. ( Base ` W ) ) |
51 |
50
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( K ( .s ` W ) C ) e. ( Base ` W ) ) |
52 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
53 |
21 41 52
|
grpsubadd |
|- ( ( W e. Grp /\ ( ( K ( .s ` W ) C ) e. ( Base ` W ) /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( ( ( K ( .s ` W ) C ) ( -g ` W ) x ) = y <-> ( y ( +g ` W ) x ) = ( K ( .s ` W ) C ) ) ) |
54 |
53
|
biimpar |
|- ( ( ( W e. Grp /\ ( ( K ( .s ` W ) C ) e. ( Base ` W ) /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) /\ ( y ( +g ` W ) x ) = ( K ( .s ` W ) C ) ) -> ( ( K ( .s ` W ) C ) ( -g ` W ) x ) = y ) |
55 |
54
|
an32s |
|- ( ( ( W e. Grp /\ ( y ( +g ` W ) x ) = ( K ( .s ` W ) C ) ) /\ ( ( K ( .s ` W ) C ) e. ( Base ` W ) /\ x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( ( K ( .s ` W ) C ) ( -g ` W ) x ) = y ) |
56 |
17 44 51 33 40 55
|
syl23anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( ( K ( .s ` W ) C ) ( -g ` W ) x ) = y ) |
57 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> W e. LMod ) |
58 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
59 |
21 58 1
|
lspcl |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
60 |
14 23 59
|
syl2anc |
|- ( ph -> ( N ` U ) e. ( LSubSp ` W ) ) |
61 |
60
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
62 |
45
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> K e. F ) |
63 |
21 1
|
lspssid |
|- ( ( W e. LMod /\ U C_ ( Base ` W ) ) -> U C_ ( N ` U ) ) |
64 |
14 23 63
|
syl2anc |
|- ( ph -> U C_ ( N ` U ) ) |
65 |
64 9
|
sseldd |
|- ( ph -> C e. ( N ` U ) ) |
66 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> C e. ( N ` U ) ) |
67 |
47 48 8 58
|
lssvscl |
|- ( ( ( W e. LMod /\ ( N ` U ) e. ( LSubSp ` W ) ) /\ ( K e. F /\ C e. ( N ` U ) ) ) -> ( K ( .s ` W ) C ) e. ( N ` U ) ) |
68 |
57 61 62 66 67
|
syl22anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( K ( .s ` W ) C ) e. ( N ` U ) ) |
69 |
52 58
|
lssvsubcl |
|- ( ( ( W e. LMod /\ ( N ` U ) e. ( LSubSp ` W ) ) /\ ( ( K ( .s ` W ) C ) e. ( N ` U ) /\ x e. ( N ` U ) ) ) -> ( ( K ( .s ` W ) C ) ( -g ` W ) x ) e. ( N ` U ) ) |
70 |
57 61 68 32 69
|
syl22anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( ( K ( .s ` W ) C ) ( -g ` W ) x ) e. ( N ` U ) ) |
71 |
56 70
|
eqeltrrd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y e. ( N ` U ) ) |
72 |
71 39
|
elind |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y e. ( ( N ` U ) i^i ( N ` V ) ) ) |
73 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( ( N ` U ) i^i ( N ` V ) ) = { .0. } ) |
74 |
72 73
|
eleqtrd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y e. { .0. } ) |
75 |
|
elsni |
|- ( y e. { .0. } -> y = .0. ) |
76 |
74 75
|
syl |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> y = .0. ) |
77 |
76
|
oveq2d |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( x ( +g ` W ) y ) = ( x ( +g ` W ) .0. ) ) |
78 |
21 41 2
|
grprid |
|- ( ( W e. Grp /\ x e. ( Base ` W ) ) -> ( x ( +g ` W ) .0. ) = x ) |
79 |
17 33 78
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( x ( +g ` W ) .0. ) = x ) |
80 |
12 77 79
|
3eqtrd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( K ( .s ` W ) C ) = x ) |
81 |
80 31
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> ( K ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) |
82 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> C e. U ) |
83 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> K e. ( F \ { O } ) ) |
84 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> W e. LVec ) |
85 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> U e. ( LIndS ` W ) ) |
86 |
21 48 1 47 8 7
|
islinds2 |
|- ( W e. LVec -> ( U e. ( LIndS ` W ) <-> ( U C_ ( Base ` W ) /\ A. c e. U A. k e. ( F \ { O } ) -. ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) ) ) ) |
87 |
86
|
simplbda |
|- ( ( W e. LVec /\ U e. ( LIndS ` W ) ) -> A. c e. U A. k e. ( F \ { O } ) -. ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) ) |
88 |
84 85 87
|
syl2anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> A. c e. U A. k e. ( F \ { O } ) -. ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) ) |
89 |
|
oveq2 |
|- ( c = C -> ( k ( .s ` W ) c ) = ( k ( .s ` W ) C ) ) |
90 |
|
sneq |
|- ( c = C -> { c } = { C } ) |
91 |
90
|
difeq2d |
|- ( c = C -> ( U \ { c } ) = ( U \ { C } ) ) |
92 |
91
|
fveq2d |
|- ( c = C -> ( N ` ( U \ { c } ) ) = ( N ` ( U \ { C } ) ) ) |
93 |
89 92
|
eleq12d |
|- ( c = C -> ( ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) <-> ( k ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) ) |
94 |
93
|
notbid |
|- ( c = C -> ( -. ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) <-> -. ( k ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) ) |
95 |
|
oveq1 |
|- ( k = K -> ( k ( .s ` W ) C ) = ( K ( .s ` W ) C ) ) |
96 |
95
|
eleq1d |
|- ( k = K -> ( ( k ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) <-> ( K ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) ) |
97 |
96
|
notbid |
|- ( k = K -> ( -. ( k ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) <-> -. ( K ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) ) |
98 |
94 97
|
rspc2va |
|- ( ( ( C e. U /\ K e. ( F \ { O } ) ) /\ A. c e. U A. k e. ( F \ { O } ) -. ( k ( .s ` W ) c ) e. ( N ` ( U \ { c } ) ) ) -> -. ( K ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) |
99 |
82 83 88 98
|
syl21anc |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> -. ( K ( .s ` W ) C ) e. ( N ` ( U \ { C } ) ) ) |
100 |
81 99
|
pm2.21fal |
|- ( ( ( ( ph /\ x e. ( N ` ( U \ { C } ) ) ) /\ y e. ( N ` V ) ) /\ ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) -> F. ) |
101 |
23
|
ssdifssd |
|- ( ph -> ( U \ { C } ) C_ ( Base ` W ) ) |
102 |
21 58 1
|
lspcl |
|- ( ( W e. LMod /\ ( U \ { C } ) C_ ( Base ` W ) ) -> ( N ` ( U \ { C } ) ) e. ( LSubSp ` W ) ) |
103 |
14 101 102
|
syl2anc |
|- ( ph -> ( N ` ( U \ { C } ) ) e. ( LSubSp ` W ) ) |
104 |
58
|
lsssubg |
|- ( ( W e. LMod /\ ( N ` ( U \ { C } ) ) e. ( LSubSp ` W ) ) -> ( N ` ( U \ { C } ) ) e. ( SubGrp ` W ) ) |
105 |
14 103 104
|
syl2anc |
|- ( ph -> ( N ` ( U \ { C } ) ) e. ( SubGrp ` W ) ) |
106 |
21 58 1
|
lspcl |
|- ( ( W e. LMod /\ V C_ ( Base ` W ) ) -> ( N ` V ) e. ( LSubSp ` W ) ) |
107 |
14 35 106
|
syl2anc |
|- ( ph -> ( N ` V ) e. ( LSubSp ` W ) ) |
108 |
58
|
lsssubg |
|- ( ( W e. LMod /\ ( N ` V ) e. ( LSubSp ` W ) ) -> ( N ` V ) e. ( SubGrp ` W ) ) |
109 |
14 107 108
|
syl2anc |
|- ( ph -> ( N ` V ) e. ( SubGrp ` W ) ) |
110 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
111 |
21 1 110
|
lsmsp2 |
|- ( ( W e. LMod /\ ( U \ { C } ) C_ ( Base ` W ) /\ V C_ ( Base ` W ) ) -> ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) = ( N ` ( ( U \ { C } ) u. V ) ) ) |
112 |
14 101 35 111
|
syl3anc |
|- ( ph -> ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) = ( N ` ( ( U \ { C } ) u. V ) ) ) |
113 |
65
|
adantr |
|- ( ( ph /\ C e. V ) -> C e. ( N ` U ) ) |
114 |
21 1
|
lspssid |
|- ( ( W e. LMod /\ V C_ ( Base ` W ) ) -> V C_ ( N ` V ) ) |
115 |
14 35 114
|
syl2anc |
|- ( ph -> V C_ ( N ` V ) ) |
116 |
115
|
sselda |
|- ( ( ph /\ C e. V ) -> C e. ( N ` V ) ) |
117 |
113 116
|
elind |
|- ( ( ph /\ C e. V ) -> C e. ( ( N ` U ) i^i ( N ` V ) ) ) |
118 |
6
|
adantr |
|- ( ( ph /\ C e. V ) -> ( ( N ` U ) i^i ( N ` V ) ) = { .0. } ) |
119 |
117 118
|
eleqtrd |
|- ( ( ph /\ C e. V ) -> C e. { .0. } ) |
120 |
|
elsni |
|- ( C e. { .0. } -> C = .0. ) |
121 |
119 120
|
syl |
|- ( ( ph /\ C e. V ) -> C = .0. ) |
122 |
2
|
0nellinds |
|- ( ( W e. LVec /\ U e. ( LIndS ` W ) ) -> -. .0. e. U ) |
123 |
3 4 122
|
syl2anc |
|- ( ph -> -. .0. e. U ) |
124 |
|
nelne2 |
|- ( ( C e. U /\ -. .0. e. U ) -> C =/= .0. ) |
125 |
9 123 124
|
syl2anc |
|- ( ph -> C =/= .0. ) |
126 |
125
|
adantr |
|- ( ( ph /\ C e. V ) -> C =/= .0. ) |
127 |
126
|
neneqd |
|- ( ( ph /\ C e. V ) -> -. C = .0. ) |
128 |
121 127
|
pm2.65da |
|- ( ph -> -. C e. V ) |
129 |
|
disjsn |
|- ( ( V i^i { C } ) = (/) <-> -. C e. V ) |
130 |
128 129
|
sylibr |
|- ( ph -> ( V i^i { C } ) = (/) ) |
131 |
|
undif4 |
|- ( ( V i^i { C } ) = (/) -> ( V u. ( U \ { C } ) ) = ( ( V u. U ) \ { C } ) ) |
132 |
130 131
|
syl |
|- ( ph -> ( V u. ( U \ { C } ) ) = ( ( V u. U ) \ { C } ) ) |
133 |
|
uncom |
|- ( ( U \ { C } ) u. V ) = ( V u. ( U \ { C } ) ) |
134 |
|
uncom |
|- ( U u. V ) = ( V u. U ) |
135 |
134
|
difeq1i |
|- ( ( U u. V ) \ { C } ) = ( ( V u. U ) \ { C } ) |
136 |
132 133 135
|
3eqtr4g |
|- ( ph -> ( ( U \ { C } ) u. V ) = ( ( U u. V ) \ { C } ) ) |
137 |
136
|
fveq2d |
|- ( ph -> ( N ` ( ( U \ { C } ) u. V ) ) = ( N ` ( ( U u. V ) \ { C } ) ) ) |
138 |
112 137
|
eqtrd |
|- ( ph -> ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) = ( N ` ( ( U u. V ) \ { C } ) ) ) |
139 |
11 138
|
eleqtrrd |
|- ( ph -> ( K ( .s ` W ) C ) e. ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) ) |
140 |
41 110
|
lsmelval |
|- ( ( ( N ` ( U \ { C } ) ) e. ( SubGrp ` W ) /\ ( N ` V ) e. ( SubGrp ` W ) ) -> ( ( K ( .s ` W ) C ) e. ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) <-> E. x e. ( N ` ( U \ { C } ) ) E. y e. ( N ` V ) ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) ) |
141 |
140
|
biimpa |
|- ( ( ( ( N ` ( U \ { C } ) ) e. ( SubGrp ` W ) /\ ( N ` V ) e. ( SubGrp ` W ) ) /\ ( K ( .s ` W ) C ) e. ( ( N ` ( U \ { C } ) ) ( LSSum ` W ) ( N ` V ) ) ) -> E. x e. ( N ` ( U \ { C } ) ) E. y e. ( N ` V ) ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) |
142 |
105 109 139 141
|
syl21anc |
|- ( ph -> E. x e. ( N ` ( U \ { C } ) ) E. y e. ( N ` V ) ( K ( .s ` W ) C ) = ( x ( +g ` W ) y ) ) |
143 |
100 142
|
r19.29vva |
|- ( ph -> F. ) |