Step |
Hyp |
Ref |
Expression |
1 |
|
lindsun.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
2 |
|
lindsun.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lindsun.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
4 |
|
lindsun.u |
⊢ ( 𝜑 → 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) |
5 |
|
lindsun.v |
⊢ ( 𝜑 → 𝑉 ∈ ( LIndS ‘ 𝑊 ) ) |
6 |
|
lindsun.2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = { 0 } ) |
7 |
|
lindsunlem.o |
⊢ 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
8 |
|
lindsunlem.f |
⊢ 𝐹 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
lindsunlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
10 |
|
lindsunlem.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐹 ∖ { 𝑂 } ) ) |
11 |
|
lindsunlem.1 |
⊢ ( 𝜑 → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝐶 } ) ) ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) |
13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
17 |
16
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑊 ∈ Grp ) |
18 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑊 ∈ Abel ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
22 |
21
|
linds1 |
⊢ ( 𝑈 ∈ ( LIndS ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
24 |
21 1
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) |
25 |
14 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) |
26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( Base ‘ 𝑊 ) ) |
27 |
|
difssd |
⊢ ( 𝜑 → ( 𝑈 ∖ { 𝐶 } ) ⊆ 𝑈 ) |
28 |
21 1
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑈 ∖ { 𝐶 } ) ⊆ 𝑈 ) → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
29 |
14 23 27 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
30 |
29
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ⊆ ( 𝑁 ‘ 𝑈 ) ) |
31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) |
32 |
30 31
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑥 ∈ ( 𝑁 ‘ 𝑈 ) ) |
33 |
26 32
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
34 |
21
|
linds1 |
⊢ ( 𝑉 ∈ ( LIndS ‘ 𝑊 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
35 |
5 34
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
36 |
21 1
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ) |
37 |
14 35 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ) |
38 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑁 ‘ 𝑉 ) ⊆ ( Base ‘ 𝑊 ) ) |
39 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) |
40 |
38 39
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
41 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
42 |
21 41
|
ablcom |
⊢ ( ( 𝑊 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) ) |
43 |
20 33 40 42
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) ) |
44 |
12 43
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) = ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) |
45 |
10
|
eldifad |
⊢ ( 𝜑 → 𝐾 ∈ 𝐹 ) |
46 |
23 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝑊 ) ) |
47 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
49 |
21 47 48 8
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐾 ∈ 𝐹 ∧ 𝐶 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |
50 |
14 45 46 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |
51 |
50
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ) |
52 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
53 |
21 41 52
|
grpsubadd |
⊢ ( ( 𝑊 ∈ Grp ∧ ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) = ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) ) |
54 |
53
|
biimpar |
⊢ ( ( ( 𝑊 ∈ Grp ∧ ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) = ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) = 𝑦 ) |
55 |
54
|
an32s |
⊢ ( ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) = ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) ∧ ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) = 𝑦 ) |
56 |
17 44 51 33 40 55
|
syl23anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) = 𝑦 ) |
57 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑊 ∈ LMod ) |
58 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
59 |
21 58 1
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
60 |
14 23 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
61 |
60
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
62 |
45
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝐾 ∈ 𝐹 ) |
63 |
21 1
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
64 |
14 23 63
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
65 |
64 9
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑁 ‘ 𝑈 ) ) |
66 |
65
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝐶 ∈ ( 𝑁 ‘ 𝑈 ) ) |
67 |
47 48 8 58
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝐾 ∈ 𝐹 ∧ 𝐶 ∈ ( 𝑁 ‘ 𝑈 ) ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ 𝑈 ) ) |
68 |
57 61 62 66 67
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ 𝑈 ) ) |
69 |
52 58
|
lssvsubcl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ 𝑈 ) ∧ 𝑥 ∈ ( 𝑁 ‘ 𝑈 ) ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) ∈ ( 𝑁 ‘ 𝑈 ) ) |
70 |
57 61 68 32 69
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ( -g ‘ 𝑊 ) 𝑥 ) ∈ ( 𝑁 ‘ 𝑈 ) ) |
71 |
56 70
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 ∈ ( 𝑁 ‘ 𝑈 ) ) |
72 |
71 39
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 ∈ ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) ) |
73 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = { 0 } ) |
74 |
72 73
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 ∈ { 0 } ) |
75 |
|
elsni |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) |
76 |
74 75
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑦 = 0 ) |
77 |
76
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑊 ) 0 ) ) |
78 |
21 41 2
|
grprid |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 0 ) = 𝑥 ) |
79 |
17 33 78
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 0 ) = 𝑥 ) |
80 |
12 77 79
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = 𝑥 ) |
81 |
80 31
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) |
82 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝐶 ∈ 𝑈 ) |
83 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝐾 ∈ ( 𝐹 ∖ { 𝑂 } ) ) |
84 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑊 ∈ LVec ) |
85 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) |
86 |
21 48 1 47 8 7
|
islinds2 |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ ( LIndS ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ ∀ 𝑐 ∈ 𝑈 ∀ 𝑘 ∈ ( 𝐹 ∖ { 𝑂 } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ) ) ) |
87 |
86
|
simplbda |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) → ∀ 𝑐 ∈ 𝑈 ∀ 𝑘 ∈ ( 𝐹 ∖ { 𝑂 } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ) |
88 |
84 85 87
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ∀ 𝑐 ∈ 𝑈 ∀ 𝑘 ∈ ( 𝐹 ∖ { 𝑂 } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ) |
89 |
|
oveq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) |
90 |
|
sneq |
⊢ ( 𝑐 = 𝐶 → { 𝑐 } = { 𝐶 } ) |
91 |
90
|
difeq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑈 ∖ { 𝑐 } ) = ( 𝑈 ∖ { 𝐶 } ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) = ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) |
93 |
89 92
|
eleq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ) |
94 |
93
|
notbid |
⊢ ( 𝑐 = 𝐶 → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ↔ ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ) |
95 |
|
oveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ) |
96 |
95
|
eleq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ↔ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ) |
97 |
96
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ↔ ¬ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ) |
98 |
94 97
|
rspc2va |
⊢ ( ( ( 𝐶 ∈ 𝑈 ∧ 𝐾 ∈ ( 𝐹 ∖ { 𝑂 } ) ) ∧ ∀ 𝑐 ∈ 𝑈 ∀ 𝑘 ∈ ( 𝐹 ∖ { 𝑂 } ) ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑐 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝑐 } ) ) ) → ¬ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) |
99 |
82 83 88 98
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ¬ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) |
100 |
81 99
|
pm2.21fal |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ) ∧ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) → ⊥ ) |
101 |
23
|
ssdifssd |
⊢ ( 𝜑 → ( 𝑈 ∖ { 𝐶 } ) ⊆ ( Base ‘ 𝑊 ) ) |
102 |
21 58 1
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∖ { 𝐶 } ) ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
103 |
14 101 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
104 |
58
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
105 |
14 103 104
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
106 |
21 58 1
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑉 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
107 |
14 35 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑉 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
108 |
58
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑉 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
109 |
14 107 108
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
110 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
111 |
21 1 110
|
lsmsp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∖ { 𝐶 } ) ⊆ ( Base ‘ 𝑊 ) ∧ 𝑉 ⊆ ( Base ‘ 𝑊 ) ) → ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) = ( 𝑁 ‘ ( ( 𝑈 ∖ { 𝐶 } ) ∪ 𝑉 ) ) ) |
112 |
14 101 35 111
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) = ( 𝑁 ‘ ( ( 𝑈 ∖ { 𝐶 } ) ∪ 𝑉 ) ) ) |
113 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ( 𝑁 ‘ 𝑈 ) ) |
114 |
21 1
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ⊆ ( Base ‘ 𝑊 ) ) → 𝑉 ⊆ ( 𝑁 ‘ 𝑉 ) ) |
115 |
14 35 114
|
syl2anc |
⊢ ( 𝜑 → 𝑉 ⊆ ( 𝑁 ‘ 𝑉 ) ) |
116 |
115
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ( 𝑁 ‘ 𝑉 ) ) |
117 |
113 116
|
elind |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) ) |
118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑈 ) ∩ ( 𝑁 ‘ 𝑉 ) ) = { 0 } ) |
119 |
117 118
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ { 0 } ) |
120 |
|
elsni |
⊢ ( 𝐶 ∈ { 0 } → 𝐶 = 0 ) |
121 |
119 120
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 = 0 ) |
122 |
2
|
0nellinds |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑈 ∈ ( LIndS ‘ 𝑊 ) ) → ¬ 0 ∈ 𝑈 ) |
123 |
3 4 122
|
syl2anc |
⊢ ( 𝜑 → ¬ 0 ∈ 𝑈 ) |
124 |
|
nelne2 |
⊢ ( ( 𝐶 ∈ 𝑈 ∧ ¬ 0 ∈ 𝑈 ) → 𝐶 ≠ 0 ) |
125 |
9 123 124
|
syl2anc |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ≠ 0 ) |
127 |
126
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑉 ) → ¬ 𝐶 = 0 ) |
128 |
121 127
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝑉 ) |
129 |
|
disjsn |
⊢ ( ( 𝑉 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ 𝑉 ) |
130 |
128 129
|
sylibr |
⊢ ( 𝜑 → ( 𝑉 ∩ { 𝐶 } ) = ∅ ) |
131 |
|
undif4 |
⊢ ( ( 𝑉 ∩ { 𝐶 } ) = ∅ → ( 𝑉 ∪ ( 𝑈 ∖ { 𝐶 } ) ) = ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝐶 } ) ) |
132 |
130 131
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∪ ( 𝑈 ∖ { 𝐶 } ) ) = ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝐶 } ) ) |
133 |
|
uncom |
⊢ ( ( 𝑈 ∖ { 𝐶 } ) ∪ 𝑉 ) = ( 𝑉 ∪ ( 𝑈 ∖ { 𝐶 } ) ) |
134 |
|
uncom |
⊢ ( 𝑈 ∪ 𝑉 ) = ( 𝑉 ∪ 𝑈 ) |
135 |
134
|
difeq1i |
⊢ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝐶 } ) = ( ( 𝑉 ∪ 𝑈 ) ∖ { 𝐶 } ) |
136 |
132 133 135
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑈 ∖ { 𝐶 } ) ∪ 𝑉 ) = ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝐶 } ) ) |
137 |
136
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( ( 𝑈 ∖ { 𝐶 } ) ∪ 𝑉 ) ) = ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝐶 } ) ) ) |
138 |
112 137
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) = ( 𝑁 ‘ ( ( 𝑈 ∪ 𝑉 ) ∖ { 𝐶 } ) ) ) |
139 |
11 138
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) ) |
140 |
41 110
|
lsmelval |
⊢ ( ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) ↔ ∃ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∃ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) ) |
141 |
140
|
biimpa |
⊢ ( ( ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝑉 ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) ∈ ( ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ 𝑉 ) ) ) → ∃ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∃ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) |
142 |
105 109 139 141
|
syl21anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝑁 ‘ ( 𝑈 ∖ { 𝐶 } ) ) ∃ 𝑦 ∈ ( 𝑁 ‘ 𝑉 ) ( 𝐾 ( ·𝑠 ‘ 𝑊 ) 𝐶 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) |
143 |
100 142
|
r19.29vva |
⊢ ( 𝜑 → ⊥ ) |