Metamath Proof Explorer


Theorem undif4

Description: Distribute union over difference. (Contributed by NM, 17-May-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion undif4 AC=ABC=ABC

Proof

Step Hyp Ref Expression
1 pm2.621 xA¬xCxA¬xC¬xC
2 olc ¬xCxA¬xC
3 1 2 impbid1 xA¬xCxA¬xC¬xC
4 3 anbi2d xA¬xCxAxBxA¬xCxAxB¬xC
5 eldif xBCxB¬xC
6 5 orbi2i xAxBCxAxB¬xC
7 ordi xAxB¬xCxAxBxA¬xC
8 6 7 bitri xAxBCxAxBxA¬xC
9 elun xABxAxB
10 9 anbi1i xAB¬xCxAxB¬xC
11 4 8 10 3bitr4g xA¬xCxAxBCxAB¬xC
12 elun xABCxAxBC
13 eldif xABCxAB¬xC
14 11 12 13 3bitr4g xA¬xCxABCxABC
15 14 alimi xxA¬xCxxABCxABC
16 disj1 AC=xxA¬xC
17 dfcleq ABC=ABCxxABCxABC
18 15 16 17 3imtr4i AC=ABC=ABC