Metamath Proof Explorer


Theorem creq0

Description: The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 . (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion creq0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) = 0 ) )

Proof

Step Hyp Ref Expression
1 neorian ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) )
2 1 con2bii ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ¬ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) )
3 crne0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) )
4 3 necon2bbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) = 0 ↔ ¬ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) )
5 2 4 bitr4id ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) = 0 ) )