Description: The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 . (Contributed by Thierry Arnoux, 20-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | creq0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) = 0 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neorian | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
2 | 1 | con2bii | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ¬ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |
3 | crne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) | |
4 | 3 | necon2bbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( i · 𝐵 ) ) = 0 ↔ ¬ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) ) |
5 | 2 4 | bitr4id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) = 0 ) ) |